
Python 1: Objects and Operators

This week we’ll start to program in Python. Python is very ‘high level,’ which means

it has a ton functionality built into it that helps you code less and more readably. The

downside of this is that you need to learn a larger list of items to explore python

efficiently.

Python is “object oriented.” This means that it is heavily involved with the way data

is structured and represented. It supports many built-in structures and allows you build

your own easily.

Our first task is therefore to understand what an object is or can be, and how this is

different from other elements of the programming language.

References
Python Standard Library: http://docs.python.org/2/library/index.html

The Python Language Reference: http://docs.python.org/2/reference/

Stack Overflow: http://stackoverflow.com/ (Warning: can be snarky, but very helpful)

Objects (Ch. 3 of Python Language Reference): An abstraction of data.

 Every object has an identity, a type and a value

 Identity: Constant, like a computer memory address

 Type: Constant, determines supported operations of the object

 Value: May change. If an object’s values can change, it is ‘mutable’

Since the type determines what you can do with an object, it is important to know

what types are built into Python. We have included a hierarchical list of common

Python types in the type_hierarchy handout. We will only be dealing with a few of these

this week: Integers, Floats, Strings, and Lists.

Type Name Description Conversion Assignment

Integers Whole numbers, int() int = 2

Floats Floating point numbers, float() flt = 2.0

Strings Ordered, immutable

character set,

str() string = “hello”

Lists Ordered, mutable object

container,

list() list = [2,2.0,

“hello”]

Common String Methods
 .upper() # capitalize string

 .lower() # make it lower case

 .split(char) # split on char (a str) and return a list

 .strip(char) # remove leading and trailing chars.

Common List Methods
 .append()

 .insert()

http://docs.python.org/2/library/index.html
http://docs.python.org/2/reference/
http://stackoverflow.com/

 .remove()

Operators

 Operators are like verbs. They are pretty easy to conceptualize since their

meaning in python is not really different from their meaning in math.

Common Operators

+ Addition 3+4=7

- Subtraction 3-4=1

* Multiplication 4*3=12

/ Division 12/4 = 3

% Modulus 4%3 = 1

** Exponent 4**3 = 64

== Equals
>>>3==4

False

!= Not equals
>>>3!=4

True

> Greater
>>>3>4

False

< Less
>>>3<4

True

>=
Greater than or equal

to

>>>3>=4

False

<= Less than or equal to
>>>3<=4

True

The Python interpreter

Type ‘python’ at the command line. As long as python is installed, this will open the

python interpreter, which is a command line-like python environment. The prompt looks

like this: >>>. Type Ctrl+D to quit.

You can access documentation on most object by typing help(object). These

aren’t always that helpful, though.

For Loops

Control the flow of your programs by iterating a command over a collection of

objects. Syntax:

for item in collection:

 do something with item

 do something else

“item” is automatically created as a variable by the loop, you don’t have to declare it

anywhere else.

While Loops

Used less often than for loops because they’re not as readable and clear. But they’re

good for some things, which we may get to later. Syntax:

while condition:

 do something

Note that if condition is always True, the loop goes on forever – not always a

disaster, actually.

List and string slicing

This bread-and-butter capability allows you to select parts of ordered objects, like

strings and lists. It takes a little getting used to, unfortunately, so make sure you get some

practice. Notation:
 collection[start:stop]

The first tricky thing is that computers start counting from 0, not 1.
 >>> string1 = “Ben”

 >>> string1[0]

 ‘B’

The next oddity is that the starting position is inclusive and the stopping position is

exclusive. So the stopping number is the first position which is not included in the slice.
 >>> string1[0:1]

 ‘B’

 >>> string1[0:2]

 ‘Be’

List and string occupancy
Python can check to see if characters or objects are in lists and strings. It will return a

Boolean type.
>>> mystring = "Rocky 4"

>>> "4" in mystring

True

>>> 4 in mystring

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

TypeError: 'in <string>' requires string as left operand

>>> mylist = ["Rocky", 4]

>>> "4" in mylist

False

>>> 4 in mylist

True

>>> print mylist[0], mylist[1], "the best movie"

Rocky 4 the best movie

