
Lecture 3
Pythons.

PSAs

● Lectures may be changed at the last minute.

● Feedback (especially negative) is very much
appreciated. Feel free to come to us with
questions during the week.

● Start thinking about what other topics you’d
like to cover.

FAQ

● Terminal color change
○ Mac: Terminal -> Preferences->Text. The window

that pops up allows you to create and save a custom
scheme

○ Linux: Edit -> Profile -> New profile -> colors
● Casting

Topics

● Review looping
● Input/ouput

○ How can you handle files with Python?

Frequently Asked Questions

● Clearing a list:
○ Reassign it
○ list = []

Frequently Asked Questions

● Clearing a list:
○ Reassign it
○ list = []

● Excel?
○ We’ll cover this later

A slight digression: White space

● White space refers to the space between
words and characters
○ In python, white space is generally not important
○ But there are two main things to be aware of:

A slight digression: White space

● White space refers to the space between
words and characters
○ In python, white space is generally not important
○ But there are two main things to be aware of:

1. Whitespace characters may be hidden in
your text, but they're there
a. Common whitespace characters:

\t, \s, \n, \r

2. Whitespace matters for indented code
a. As we’ve seen with loops

Looping

● In its most basic form, the act of doing a task
many times

Looping

● In its most basic form, the act of doing a task
many times

● Loops, along with other statements we'll
cover, give your program control flow

Input/Output

● You don't always want to type input into the
terminal.

Input/Output

● You don't always want to type input into the
terminal.

● Instead, you might have a data file that you
would like to open and use as input

Input

● open() is one of the most common ways of
doing this

■ f = open('filename', 'mode')
■ the 'filename' will be the file you want to open
■ 'mode' will be what you would like to do with this

file
● r for read will be assumed if no mode is provided
● Read-only means you cannot write to the file
● w will allow you to write to the file
● r+ will allow reading and writing

Input example

● I have some data in a file. I'd like to open it,
read it and write some lines to it, as well

■ >>> f = open('locations.csv' , 'r+')
○ f is now a file object
○ This simply opens the file in a way that will allow

reading and writing

Input

● Now what?
○ >>> f.read()

■ Returns your whole file as one big string. It will
not be nicely formatted and will show whitespace
characters.

○ >>> f.readlines()
■ I want you all to try this. Open the file in a text

editor, and compare this to what you see on the
screen

Note

● Both of the previous commands read
beginning to end-of-file

● Notice what happens if you run them
sequentially

● f.seek(0)

Input

● Now what?
● f.readlines()

○ This will create a list of all the lines in a file
○ Or, you can do a little looping

■ >>> for line in f:
■ ... print line

○ Capture these to variables
■ >>> myfile = file.read()
■ >>> location = file.readlines()

Input

>>> for lin in location:
… print(lin).split()

Input

>>> for lin in location:
… print(lin).split()

● What has split done?
● What type of object is lin?

Input

● We can manipulate lin as a string!

>>> for lin in location:
… print(lin).strip(',')

Input

>>> loc_list = []
>>> for lin in location:
... loc_list.append((lin).strip().split(','))

 >>> for i in loc_list[0:]:
... if len(i) == 4:
... print 'looks good'

Challenge One

● How could you modify our workflow so far to
use tab-delimited data?

● We’ve provided a tab-delimited version of
the same data for you to try this.

● Try building lists from different columns and
rows in the matrix. Does the slicing behave
like you’d expect?

Hint: What symbol does python expect for a
tab? It’s been in this lecture, but feel free to
google.

Parsing

● A very useful data structure is the dictionary
○ Like a real dictionary, this is a structure in which

there is a key and a value
● The key is a unique identifier by which you can call the

variable.

>>> money_dict = {} # Dict initialize with {}
>>> for lin in loc_list:
... money_dict[lin[0]]=lin[3]

Parsing

>>> money_dict['Lake_Creek']

180

Output

● Pretty similar to input!
○ But you need different permissions...
○ >>> outfile = open('outfile.txt','w') #writing permission
○ >>> outfile.write(my_data_object)
○ >>> outfile.close()

Output

● outfile = open('outfile.txt','w')
● File modes:

○ ‘w’ will overwrite a file if it exists
■ Be careful with this! Make backups of important

files often!
○ ‘a’ will append to a file

■ Your output will go at the end

Output

● outfile = open('outfile.txt','w')
● File modes:

○ ‘w’ will overwrite a file if it exists
■ Be careful with this! Make backups of important

files often!
○ ‘a’ will append to a file

■ Your output will go at the end

 With great power comes great responsibility!

Output

We can get fancy:

>>> outfile = open('out.txt', 'w')
>>> for item in money_dict.keys():
... outfile.write('It cost %s dollars to sample %s location' %(money_dict
[item], item) + '\n')

>>> outfile.close()

The with statement

● A ‘with’ statement calls an object’s enter and
exit methods

● Consider:

>>> with open(‘locations.csv’) as f:
… data = f.read()

The with statement

● A ‘with’ statement calls an objects enter and
exit methods

● Consider:

>>> with open(‘locations.csv’) as f:
… data = f.read()
...

● If we type nothing else, this will execute read() and
close the file for us. Easy!

Comprehensions

● But to make full use of this wonderful
statement, we should try a new way to
create lists

Comprehensions

● But to make full use of this wonderful
statement, we should try a new way to
create lists

● The list comprehension is a concise list
constructor

Comprehensions

● The paradigm so far:

for item in thing:
list.append(item)

Comprehensions

● The paradigm so far:

list = []
for item in thing:

list.append(item)

● We can compact this

Comprehensions

● We can compact this:

list = [item for item in thing]

We combine the initializing with the population
of the list.

Comprehensions

● We can compact this:

with open(“locations.csv”) as f:
loc_list = [line.strip().split(",") for line in f]

We combine the initialize the loc_list
We populate the loc_list with lines from f
We don’t have to close the file - ‘with’ does this

Exercise

● For either of the two provided files, or one of
your own
○ Open the spreadsheet and read it in.
○ Choose a numerical column. Average it.
○ Write a statement about what mathematical

operation you did, how you did it, and the result to a
file

Homework

● If you have a spreadsheet of your own data,
think of two tasks you can do with that data.
Try them. E-mail us the code you used, and
the data. What worked? What did not work?
○ No Excel (yet)

Homework

● If you don’t have your own data, we have
provided a set.

Homework

● Read in the data
● Try

○ Checking for missing values

Homework

● Read in the data
● Try some data quality control

○ Checking for missing values
○ Check that each column has the right data type

Column One Strings

Column Two
Numbers

Column Tree Numbers

Column Four Numbers, all of which are unique

Homework

● Read in the data
● Try some data quality control

○ Checking for missing values
○ Check that each column has the right data type

Column One Strings

Column Two
Numbers

Column Tree Numbers

Column Four Numbers, all of which are unique

Hints

Google your error messages!

Hints
Checking for missing values
How many values should be in each row? How can we
check this? Subjective: What should we do with missing
values? This is a real issue in almost everyone’s work!

Check that each column has the right data type
This is a hard one. Think carefully about how to isolate data
column-wise.
If a string is a number, what must it be possible to cast it
as?
The last column is an extra special challenge. How might
the set data type help with this?: http://docs.python.
org/2/library/stdtypes.html#set

Additional Resources

File I/O
● http://docs.python.org/2/tutorial/inputoutput.

html
● http://www.software-carpentry.

org/v4/python/io.html
● http://www.codecademy.

com/courses/python-intermediate-en-
OGNHh/0/1?
curriculum_id=4f89dab3d788890003000096

http://docs.python.org/2/tutorial/inputoutput.html
http://docs.python.org/2/tutorial/inputoutput.html
http://docs.python.org/2/tutorial/inputoutput.html
http://www.software-carpentry.org/v4/python/io.html
http://www.software-carpentry.org/v4/python/io.html
http://www.software-carpentry.org/v4/python/io.html
http://www.codecademy.com/courses/python-intermediate-en-OGNHh/0/1?curriculum_id=4f89dab3d788890003000096
http://www.codecademy.com/courses/python-intermediate-en-OGNHh/0/1?curriculum_id=4f89dab3d788890003000096
http://www.codecademy.com/courses/python-intermediate-en-OGNHh/0/1?curriculum_id=4f89dab3d788890003000096
http://www.codecademy.com/courses/python-intermediate-en-OGNHh/0/1?curriculum_id=4f89dab3d788890003000096
http://www.codecademy.com/courses/python-intermediate-en-OGNHh/0/1?curriculum_id=4f89dab3d788890003000096

Additional Resources

List comprehensions
● http://docs.python.

org/2/tutorial/datastructures.html
● http://www.pythonforbeginners.com/lists/list-

comprehensions-in-python/
Dictionaries
● http://docs.python.

org/2/tutorial/datastructures.html
● http://www.pythonforbeginners.

com/dictionary/

http://docs.python.org/2/tutorial/datastructures.html
http://docs.python.org/2/tutorial/datastructures.html
http://docs.python.org/2/tutorial/datastructures.html
http://www.pythonforbeginners.com/lists/list-comprehensions-in-python/
http://www.pythonforbeginners.com/lists/list-comprehensions-in-python/
http://www.pythonforbeginners.com/lists/list-comprehensions-in-python/
http://docs.python.org/2/tutorial/datastructures.html
http://docs.python.org/2/tutorial/datastructures.html
http://docs.python.org/2/tutorial/datastructures.html

Additional Resources

String Formatting/Placeholders
● http://www.diveintopython.

net/native_data_types/formatting_strings.
html

http://www.diveintopython.net/native_data_types/formatting_strings.html
http://www.diveintopython.net/native_data_types/formatting_strings.html
http://www.diveintopython.net/native_data_types/formatting_strings.html
http://www.diveintopython.net/native_data_types/formatting_strings.html

