
Lecture Five
Putting it together

 



Plan for the day

● Quick review
○ If/else clauses
○ String replacement

● Writing usable code
○ Scripts
○ Modules
○ Functions



Control Flow: Selection

for item in collection:

if condition:

do something



Control Flow: Selection

for item in collection:

if condition:

do something

for item in collection:

if condition:

do something

else:

do something else



Control Flow: Selection

>>> L = [1,2,3,4]

>>> for i in L:

... if i%2 == 0: # no remainder

...         print i

...

2

4



Control Flow: Selection

>>> for i in L:

... if i%2 == 0:

...         print "%s is even!" % i

... else:

...         print "%s is odd!" % i

...

1 is odd!

2 is even!

3 is odd!

4 is even!



Control Flow: Selection

● Multiple conditions

for item in collection:

if condition:

do something

elif: # Read: “Else if”
do something else

else:

do something when both are False



String replacement

● How do I print a variable within a string?

>>> for i in range(5):

... print "Hello Dave, I'm on number %i" % i

...

Hello Dave, I'm on number 0

Hello Dave, I'm on number 1

Hello Dave, I'm on number 2

Hello Dave, I'm on number 3

Hello Dave, I'm on number 4



String replacement

● How do I print a variable within a string?

>>> for i in range(5):

... print "Hello Dave, I'm on number %i" % i

...

Hello Dave, I'm on number 0

Hello Dave, I'm on number 1

Hello Dave, I'm on number 2

Hello Dave, I'm on number 3

Hello Dave, I'm on number 4

Place holder



String replacement

● How do I print a variable within a string?

>>> for i in range(5):

... print "Hello Dave, I'm on number %i" % i

...

Hello Dave, I'm on number 0

Hello Dave, I'm on number 1

Hello Dave, I'm on number 2

Hello Dave, I'm on number 3

Hello Dave, I'm on number 4

Place holder



String replacement

● Need to specify which type you are replacing 
with
○ %i → int
○ %s → string
○ %d → numeric (captures ints and floats)



String replacement

● Multiple values

>>> D = {1: 'one', 2: 'two'}

>>> for i,j in D.iteritems():

... print "Key: %d, Value: %s" % (i,j)

...

Key: 1, Value: one

Key: 2, Value: two



String replacement

● Multiple values

>>> D = {1: 'one', 2: 'two'}

>>> for i,j in D.iteritems():
... print "Key: %d, Value: %s" % (i,j)

...

Key: 1, Value: one

Key: 2, Value: two



String replacement

● Multiple values

>>> D = {1: 'one', 2: 'two'}

>>> for i,j in D.iteritems():

... print "Key: %d, Value: %s" % (i,j)

...

Key: 1, Value: one

Key: 2, Value: two



Types of programs

● Not everything happens at the interpreter

● It’s good to have a copy of the code you ran

● There are at least three ways to interact with 
a written program
○ At the interpreter via import
○ Execution at the command line (scripting)
○ Execution with user input (raw_input())



Scripts

● Series of commands in a text file

● Executed at the command line

● Will usually have text input and output

my_data.txt script.py new_data.txt



Scripts

Site,Observations,Species,Expenditure

Lake_Creek,4,12,180

Los_Alamos,8,340

Big_Bend,a,6,280

McDonald,5,20,280

Balmorrhea,3,3,174



Scripts
>>> line_list = []

>>> with open("homework.csv") as f:

>>>    for line in f:

>>>    line = line.strip().split(',')

>>>    line_list.append(line)

    

>>> expenses = {}

>>> for line in line_list[1:]: 

>>>     expenses[line[0]] = line[-1] 

    

>>> for site in expenses:

>>>    print "Spent %s at %s" % (expenses[site],site)



Scripts

>>> for site in expenses:

>>>    print "Spent %s at %s" % (expenses[site],site)

Spent 280 at Big_Bend

Spent 280 at McDonald

Spent 174 at Balmorrhea

Spent 340 at Los_Alamos

Spent 180 at Lake_Creek



Scripts
line_list = [] # Declare empty list

with open("homework.csv") as f: # Open file buffer

    for line in f:

   line = line.strip().split(',')

   line_list.append(line)

    

expenses = {}

for line in line_list[1:]: 

    expenses[line[0]] = line[-1] 

    

for site in expenses:

    print "Spent %s at %s" % (expenses[site],site)



Scripts
line_list = []

with open("homework.csv") as f:

    for line in f:

    line = line.strip().split(',')# Clean lines

    line_list.append(line) # Build list

    

expenses = {}

for line in line_list[1:]: 

    expenses[line[0]] = line[-1] 

    

for site in expenses:

    print "Spent %s at %s" % (expenses[site],site)



Scripts
line_list = []

with open("homework.csv") as f:

    for line in f:

    line = line.strip().split(',')

    line_list.append(line)

    

expenses = {} # Declare empty dictionary

for line in line_list[1:]: 

    expenses[line[0]] = line[-1] # Populate from list

    

for site in expenses:

    print "Spent %s at %s" % (expenses[site],site)



Scripts
line_list = []

with open("homework.csv") as f:

    for line in f:

    line = line.strip().split(',')

    line_list.append(line)

    

expenses = {}

for line in line_list[1:]: 

    expenses[line[0]] = line[-1] 

    

for site in expenses: # Iterate over dictionary keys

    print "Spent %s at %s" % (expenses[site],site)

# Use string replacement to print out a nice report



Scripts

● Now we want this functionality without 
having to retype at the interpreter.

● We’re going to write it into a script
a. Get rid of useless code
b. Add 2 elements to make the script work

■ Telling the computer how to translate python
■ Provide input to the script

c. Give ourselves permission to run the script (because 
we deserve it, and it’s our computer, after all).

d. Reap substantial rewards.



Scripts
line_list = [] # Turn this all into a list comprehension

with open("homework.csv") as f:

   for line in f:

   line = line.strip().split(',')

   line_list.append(line)

    

expenses = {}

for line in line_list[1:]: 

    expenses[line[0]] = line[-1] 

    

for site in expenses:

   print "Spent %s at %s" % (expenses[site],site)



Scripts
with open("homework.csv") as f: # You saved 3 lines

   line_list = [line.strip().split(',') for line in f]

 

expenses = {}

for line in line_list[1:]: 

    expenses[line[0]] = line[-1] 

    

for site in expenses:

   print "Spent %s at %s" % (expenses[site],site)



Scripts
with open("homework.csv") as f:

   line_list = [line.strip().split(',') for line in f]

 

expenses = {} # This part is useless, I just wanted to

for line in line_list[1:]: # make sure you understood

    expenses[line[0]] = line[-1] # dictionaries.

    

for site in expenses:

   print "Spent %s at %s" % (expenses[site],site)



Scripts
with open("homework.csv") as f:

   line_list = [line.strip().split(',') for line in f]

    

for line in line_list:

   print "Spent %s at %s" % (line[-1],line[0])



Scripts
with open("homework.csv") as f:

   line_list = [line.strip().split(',') for line in f]

    

for line in line_list:

   print "Spent %s at %s" % (line[-1],line[0])

● Note that you do not technically need to 
create line_list
○ You could iterate over the file, printing as you go.



Scripts
line_counter = 0

with open("homework.csv") as f:

   for line in f: 

line = line.strip().split(“,”)

if line_counter > 0: # skip first line

print "Spent %s at %s" % (line[-1],line[0])

line_counter +=1 # increment line_counter

● Just add line_counter to skip first line.
○ This works, but why might you not want to do it?



Scripts
line_counter = 0

with open("homework.csv") as f:

   for line in f: 

line = line.strip().split(“,”)

if line_counter > 0: # skip first line

print "Spent %s at %s" % (line[-1],line[0])

line_counter +=1 # increment line_counter

● Just add line_counter to skip first line.
○ This works, but why might you not want to do it?
○ The file has more information than just expenses, 

what if you want those in the future?



Scripts

● Now let’s see what the code looks like in a 
script



Scripts

● Now let’s see what the code looks like in a 
script

● But now your script can only open the one 
file
○ This is called hard coding - avoid this by adding 

functionality to pass arguments to your script
○ Recall Unix

ls -a
Command argument



$ expenditures_1.py homework.txt



$ expenditures_1.py homework.txt



Script body

$ expenditures_1.py homework.txt



Script body
import sys

$ expenditures_1.py homework.txt



Script body
import sys

infile=sys.argv[1]

$ expenditures_1.py homework.txt



Modules

● A lot of people have developed widgets and 
extensions for use with Python
○ Some come with Python standard
○ Some you have to download

● How to get access from a script
○ import: bring module into your name space
○ Once there, access function via dot notation, as 

usual (yes, they are objects too).

import module
module.function()



Modules
sys Interact with command line

os More extensive interaction

pprint “Pretty print”

itertools Very useful combinatorics

math Math

numpy, scipy, matplotlib, 
pandas

Linear algebra, stats, 
visualization, and much 
more - next week

BioPython Excellent resources for 
bioinformatics



Modules

● Can I make my own modules?
○ We already have
○ Each python file is a potential module
○ Try this:  import expenditures_1
○ Note: a file called expenditures_1.pyc will be 

created. This is a binary file, so the import will be 
faster next time.

● The next step is about how to do this better



In-class activity

● But first, write and execute a script called 
“species.py” that does what expenditures_2.
py does, but for species.
○ Note: Los Alamos is missing one column, let’s say it’

s missing “observations,” not “species.”

● Use your plain text editor, not Word.
○ Nano works, but will be a pain.



Functions

● When we imported expenditures_1.py, it just 
ran the script.
○ Afterwards, we could not access it’s functionality.

● We want another object that can hold 
functionality, without executing sequentially
○ These are functions



Functions
with open(infile) as f: # open and parse file

    line_list = [line.strip().split(',') for line in f]

    

for line in line_list[1:]: # print expenditures

    print "Spent %s at %s" % (line[-1],line[0])



Functions
def parse_file(infile): # open and parse file

    with open(infile) as f:

    line_list = [line.strip().split(',') for line in f]

    return line_list

def print_exps(infile): # print expenditures

    lines = parse_file(infile)

    for line in lines[1:]:

    print "Spent %s at %s" % (line[-1],line[0])



Functions
def parse_file(infile):

    with open(infile) as f:

    line_list = [line.strip().split(',') for line in f]

    return line_list

def print_exps(infile):

    lines = parse_file(infile)

    for line in lines[1:]:

    print "Spent %s at %s" % (line[-1],line[0])

● Def: Like a variable, binds indented code to a name
○ Prevents execution until it is called by name



Functions
def parse_file(infile):

    with open(infile) as f:

    line_list = [line.strip().split(',') for line in f]

    return line_list

def print_exps(infile):

    lines = parse_file(infile)

    for line in lines[1:]:

    print "Spent %s at %s" % (line[-1],line[0])

● Return: Output a value without printing it. The value 
can now be bound to variable.



Functions
def parse_file(infile):

    with open(infile) as f:

    line_list = [line.strip().split(',') for line in f]

    return line_list

def print_exps(infile):

    lines = parse_file(infile)# Call parse_file, and bind

    for line in lines[1:]: # its output to name ‘lines’

    print "Spent %s at %s" % (line[-1],line[0])

● Return: Output a value without printing it. The value 
can now be bound to variable.



Functions
import sys

infile = sys.argv[1]

def parse_file(infile):

    with open(infile) as f:

    line_list = [line.strip().split(',') for line in f]

    return line_list

def print_exps(infile):

    lines = parse_file(infile)

    for line in lines[1:]:

    print "Spent %s at %s" % (line[-1],line[0])

print_exps(infile)

 ## expenditures_3.py - let’s see how it executes



Functions
import sys # Import

infile = sys.argv[1]

def parse_file(infile): 

    with open(infile) as f:

    line_list = [line.strip().split(',') for line in f]

    return line_list

def print_exps(infile):

    lines = parse_file(infile)

    for line in lines[1:]:

    print "Spent %s at %s" % (line[-1],line[0])

print_exps(infile)



Functions
import sys

infile = sys.argv[1] # Declare global variable ‘infile’

def parse_file(infile): 

    with open(infile) as f:

    line_list = [line.strip().split(',') for line in f]

    return line_list

def print_exps(infile):

    lines = parse_file(infile)

    for line in lines[1:]:

    print "Spent %s at %s" % (line[-1],line[0])

print_exps(infile)



Functions
import sys

infile = sys.argv[1]

def parse_file(infile): # Declare parse_file

    with open(infile) as f:

    line_list = [line.strip().split(',') for line in f]

    return line_list

def print_exps(infile):

    lines = parse_file(infile)

    for line in lines[1:]:

    print "Spent %s at %s" % (line[-1],line[0])

print_exps(infile)



Functions
import sys

infile = sys.argv[1]

def parse_file(infile):

    with open(infile) as f:

    line_list = [line.strip().split(',') for line in f]

    return line_list

def print_exps(infile): # Declare print_exps

    lines = parse_file(infile)

    for line in lines[1:]:

    print "Spent %s at %s" % (line[-1],line[0])

print_exps(infile)



Functions
import sys

infile = sys.argv[1]

def parse_file(infile):

    with open(infile) as f:

    line_list = [line.strip().split(',') for line in f]

    return line_list

def print_exps(infile):

    lines = parse_file(infile)

    for line in lines[1:]:

    print "Spent %s at %s" % (line[-1],line[0])

print_exps(infile)  # Call to print_exps



Functions
import sys

infile = sys.argv[1]

def parse_file(infile):

    with open(infile) as f:

    line_list = [line.strip().split(',') for line in f]

    return line_list

def print_exps(infile): # Execute 

    lines = parse_file(infile)

    for line in lines[1:]:

    print "Spent %s at %s" % (line[-1],line[0])

print_exps(infile)  # Call to print_exps



Functions
import sys

infile = sys.argv[1]

def parse_file(infile): # Execute

    with open(infile) as f:

    line_list = [line.strip().split(',') for line in f]

    return line_list

def print_exps(infile):

    lines = parse_file(infile)# Call

    for line in lines[1:]:

    print "Spent %s at %s" % (line[-1],line[0])

print_exps(infile)  



Functions
import sys

infile = sys.argv[1]

def parse_file(infile):

    with open(infile) as f:

    line_list = [line.strip().split(',') for line in f]

    return line_list # Return

def print_exps(infile):

    lines = parse_file(infile)# Bind

    for line in lines[1:]:

    print "Spent %s at %s" % (line[-1],line[0])

print_exps(infile)  



Functions
import sys

infile = sys.argv[1]

def parse_file(infile):

    with open(infile) as f:

    line_list = [line.strip().split(',') for line in f]

    return line_list

def print_exps(infile):

    lines = parse_file(infile)

    for line in lines[1:]: # Print

    print "Spent %s at %s" % (line[-1],line[0])

print_exps(infile)  



Functions

● We still have a problem with import

>>> import expenditures_3

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

  File "expenditures_3.py", line 5, in <module>

infile = sys.argv[1]

IndexError: list index out of range

● Choked on global variable, because we had 
no input from command line.



Functions

● Solve this by putting this at the bottom of the 
script (expenditures_4.py):

if __name__ == '__main__':

    infile = sys.argv[1]

    print_exps(infile)

● "If I (__name__) am being executed from the 
command line (__main__), do the below"
○ Protects the functions from execution unless the 

script is being executed at the command line.



Functions

● Finally!

>>> import expenditures_4 # Interpreter

>>> expenditures_4.print_exps("homework.csv")#Dot notation

Spent 180 at Lake_Creek

Spent 340 at Los_Alamos

Spent 280 at Big_Bend

Spent 280 at McDonald

Spent 174 at Balmorrhea

$ ./expenditures_4.py homework.csv # Command line

Spent 180 at Lake_Creek

Spent 340 at Los_Alamos

...



Functions

● Use file redirection

$ ./expenditures_4.py homework.csv >> expense_summary.txt

● Or you could open a file to print to within the 
script.
○ But make sure to avoid hard coding, i.e., use the 

second command line argument (sys.argv[2]) to 
name the outfile



Functions 

● We made this code more streamlined, 
modular, and readable.

● It can be used as a module or a script
○ In module form, it’s script name becomes its module 

name (minus the “.py”) and its functions become 
module methods.



More on functions

● Functions should do one, modular task
○ Think about what you want to do first



More on functions

● Functions should do one, modular task
○ Think about what you want to do first

● Write out the steps you think your code 
should follow:
○ "Open and parse file into a list"
○ "Loop over list and extract x, y, but not z"

etc etc...



More on functions

● Then open a file, put in a SheBang line 
and…

● Start writing functions!
○ Start at the bottom
○ “Open and parse file into a list” becomes…

def parse(infile):

with open(infile) as f:

return parsed data



More on functions

● Then open a file, put in a SheBang line 
and…

● Start writing functions!
○ Start at the bottom
○ Now you need a new function: parsed_data()

def parse(infile):

with open(infile) as f:

return parsed_data(infile)



More on functions

● Then open a file, put in a SheBang line 
and…

● Start writing functions!
○ Start at the bottom

def parsed_data(buffer):

parsed_object = object

for line in buffer:

parsed = line_parser(line) # etc. etc.

add parsed to parsed_object



More on functions

● Functions should be direct expressions of 
the flow you want your code to take
○ Organizing them is the hard part
○ Don’t expect to get it right the first time

● Writing it all out by hand first helps
○ Better yet, when you’re writing, also write down a 

test that each step should pass

parsed(infile) 

#should return a list of lists



More on functions

● Passing more than one argument

def function(parameter list):

code to be executed

● parameter list is a comma delimited series of 
objects you wish to pass to the function.

● Can set default values

def parsed(infile=”homework.csv”):

return parsed infile



Common pitfalls

● Variable scope

def parse_file(infile):

with open(infile) as f:

line_list = [line.strip().split(',') for line in f]

return line_list

def print_exps(infile):

for line in line_list: # Why can’t I do this?

print "Spent %s at %s" % (line[-1],line[0])

● line_list has local scope within parse_file



Common pitfalls

● Variable scope

def parse_file(infile):

with open(infile) as f:

line_list = [line.strip().split(',') for line in f]

return line_list

def print_exps(infile):

lines = parse_file(infile) # That’s why we need to pass

for line in lines[1:]:

    print "Spent %s at %s" % (line[-1],line[0])



Program Flow

● Ideally, programs are cascading sets of 
functions that are not hard-coded
○ When you're structuring a program, it's important to 

think about who will use the program. Why will they 
use it? How can you make the program more 
flexible?



raw_input()

● We talked about sys_argv[]
● What if you want to have someone input 

some value for a calculation
● Python has a function for this called 

raw_input()
● This will take in a value that can be 

interacted with by a script



raw_input()

● >>> a = raw_input('Please enter a number 
here: ')

    >>> print a



raw_input()

● >>> a = raw_input('Please enter a number 
here: ')

    >>> print a
Please enter a number here: 



raw_input()

● >>> a = raw_input('Please enter a number 
here: ')

     >>> print a
Please enter a number here: 12



raw_input()

● >>> a = raw_input('Please enter a number 
here: ')

     >>> print a
Please enter a number here: 12
12



raw_input()

● So what happened here?
○ Python read the raw_input call and prompted you to 

enter some information
○ Python read this information and did what you said 

to do with it 
■ Print, in this case

○ But you could do pretty much any other operation



raw_input()

● What if I had entered a letter?
○ raw_input would have accepted it
○ This is why it's helpful to have text that tells the user 

what to put in



Wrapping it up and putting a bow on 
it

● When do you want to write to a file versus to 
the standard output?



Wrapping it up and putting a bow on 
it

● When do you want to write to a file versus to 
the standard output?
○ Standard out is great for including print statements 

to do error checking
○ Also for passing output to other programs or scripts



Wrapping it up and putting a bow on 
it

● When do you want to write to a file versus to 
the standard output?
○ Standard out is great for including print statements 

to do error checking
○ Also for passing output to other programs or scripts
○ Writing to a file is great if you need to run part of 

your script in one location and part in another
■ Generate data file on desktop, Run on TACC

○ Temporal separation of steps.
○ Import to R.



Wrapping it up and putting a bow on 
it

● When do you want to write to a file versus to 
the standard output?
○ Standard out is great for including print statements 

to do error checking
○ Also for passing output to other programs or scripts
○ Writing to a file is great if you need to run part of 

your script in one location and part in another
■ Generate data file on desktop, Run on TACC

○ Temporal separation of steps.
○ Import to R.
○ Some of this is personal; I output nearly everything 

to file so I have a constant record of my activities



Homework

● Look up the modules we gave you above.
○ Google “python module”
○ See which ones look interesting
○ If you’re feeling plucky, try some out
○ Make note of anything you might like us to cover on 

the free day, and email us with this info (be specific)
● Read the Cheatsheet and Extensions
● Take the script homework.py and break it up 

into functions
○ It should be executable from the command line and 

importable at the interpreter.


