

Tuples

Ordered, immutable sequence of objects. Since it’s ordered, a tuple can be indexed, so it’s like a list you

can’t change. Doesn’t sound that useful? We’ll see about that…

 Declaration: tup1 = (ob1, ob2, …etc.)

 Type Conversion: tuple()

Using Tuples with Dictionaries: These two types show up together a lot.

Convert a list of tuples to a dictionary

>>> tups_list = [('a',1), ('b',2)]

>>> D = dict(tups_list)

>>> D

{'a': 1, 'b': 2}

Iterating over dictionary key/value pairs with iteritems()

Each returned value of iteritems() is a tuple

>>> for i in D.iteritems():

... print i

...

('a', 1)

('b', 2)

Now loop with multiple assignment

>>> for i,j in D.iteritems():

... print i,j

...

a 1

b 2

Useful built-in functions

Python has several built-in function which make data handling even easier. See ‘Built in Functions’ for

more: http://docs.python.org/2/library/functions.html#map.

 enumerate(): Return an iterator, where each item (when iterated over) returns a tuple

 (place in sequence, item)
 >>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']

 >>> for i in enumerate(seasons):

 … print i

 …

 (0, 'Spring')

 (1, 'Summer')

 (2, 'Fall')

 (3, 'Winter')

 >>> seasonslist = [i for i in enumerate(seasons)]

http://docs.python.org/2/library/functions.html#map

 eval(): Executes a python expression from a string of that expression.
 >>> print ‘2+2’

 2+2

 >>> print eval(‘2+2’)

 4

map(function,iterable1, iterable2…): Apply function to every value of iterables, and return list

of results as tuples. If function is None, return list of tuples of corresponding items in all

iterables. This is useful for stitching lists together without having to write your own code.
>>> orgs = [‘Bird’, ‘Bee’, ‘Bear’]

>>> sightings = [25, 67, 5]

>>> map(None,orgs,sightings)

[('Bird', 25), ('Bee', 67), ('Bear', 5)]

range(): This one’s pretty straightforward
>>> range(5)

[0,1,2,3,4,5]

>>> range(1,5)

[1,2,3,4,5]

>>> range(1,10,2)

[0,2,4,6,8]

>>> for i in range(3):

… print i

…

0

1

2

