
Week 4- Functions and Modules

This week, we introduce two new objects: functions and modules. Modules are scripts written by

other whose functionality you can access in your own code. Functions are a way of creating your own

blocks of code that can also be accessed by name.

Functions

Functions are objects that you make yourself. They are compact pieces of code that can be accessed

by name elsewhere, preventing redundancy. They are an important part of programming in Python.

Using functions forces you to think about your script as a series of modular parts, which leads to code that

is more flexible, readable, and easier to use in the future. Not everyone uses them regularly. The code in

Haddock and Dunn’s “Practical Computing for Biologists” makes little use of functions. O’Reilly’s

“Bioinformatics Programming using Python,” on the other hand, uses functions exclusively for the main

body of their code. You will find your own way, which will likely be somewhere in between these two.

General form:
def name(parameter-list):

 body

“Parameter-list” will be zero or more comma-delimited parameters that you wish to pass to the

function. The function will not work unless all the defined parameters are filled in when the function is

called.

Return: Some functions do not return values, such as a function which just prints whatever values it

receives. But if you want your function to return a value, you need a ‘return’ statement.
return value

The ‘return’ statement exits the function, and returns value to whatever called it.

Example
>>> num = ‘whatever’

>>> def square(num): # function definition

… return num**2

>>> print num # function parameter ‘num’ has local scope

whatever

>>> list = [1,2,3,4]

>>> for i in list:

… print square(i) # function call

…

1

4

9

16

Docstrings: Comments about functions are typically done with docstrings, which, unlike comments

can be seen by the interpreter.
def square(num):

 '''returns the square of input integer''' # docstring

 return num**2

Default Parameter Values: You can define a default parameter value for a function. This parameter,

unlike other, can be left blank, in which case it will take on its default value. If the value is Boolean (True

or False), this parameter is typically called a flag. The function below relies on the string method

.count().

def base_counter(seq, is_RNA=False):

'''Prints counts for each base in a sequence. Counts 'U' if is_RNA

is True.'''

 seq = seq.upper()

 if is_RNA:

 baselist = ['A','C','U','G']

 else:

 baselist = ['A','C','U','G']

 for base in baselist:

 print base + ": %s" % seq.count(base)

>>> seq = 'atgact'

>>> base_counter(seq) # 'is_RNA' is evaluated as False

A: 2

C: 1

T: 2

G: 1

>>> seq = 'augacu'

>>> base_counter(seq, True) # 'is_RNA' is True

A: 2

C: 1

U: 2

G: 1

Program Flow: Your program should be a cascading set of functions. It may seem harder to make a

script with functions rather than just writing it out ‘globally,’ but it will help you organize your code,

prevent redundancy, and increase readability. It seems overwhelming at first, so write out what you want

to do first, and then think about what tasks the program will have to accomplish to do this. Finally, turn

these elements into functions.

Modules

Python is a popular language, and lots of people have come up with useful extensions and pieces of code,

called modules. Some functionality is included in the base Python package, but others need to be called

specifically into your program. Today, we'll cover some common and useful modules.

Each module has a name which, when imported, has a number of methods associated with it. The

methods are accessed via the usual dot notation.
modulename.method

To get access to a module’s functionality, you need to import it using an ‘import’ statement.
import module

You can selectively import one method from a module, or import multiple modules and methods:
from module import method # import just one method from module

import module1, module2

Python has a number of built-in functions that are very useful, some of which are discussed in these

week’s Extensions. I highly recommend looking at all of them here:

http://docs.python.org/2/library/functions.html

Common Modules

These modules are not available by default and must be imported via import statements.

os: OS is a module that allows programmers to access the Unix operating system of the computer.

 os.getcwd() : In a Python script, find out in which working directory you are located. Analogous

to pwd in UNIX.

 os.chdir(path) : From Python, change your working directory. Similar to UNIX's cd.

 os.tmpfile() : Returns a temporary file object that can be read and written to, and will be erased at

the end of the script.

sys: A module for access interpreter-level functionalities.

 sys.argv[] : Return the list of command line argument parameters. Used to pass arguments to the

script. For example, from the modularized script obs_counter2.py:
 infile = sys.argv[1]

 This will set the value of infile to the first argument provided by the user. For example:
 ./obs_counter2.py file1.txt

 will perform the operations contained in obs_counter2.py on file1.txt

 sys.stderr: Corresponds to the command line’s stderr stream. This is useful because you

sometimes want to capture part of the python output with the redirect (‘>>’), but to have other parts

keep on printing. Since stdout (via the ‘print’ statement) will be captured by the redirect, but stderr wont,

you can use these two streams to separate parts of your output. Use like this:
 sys.stderr.write(“stderr string”)

pprint: Also known as pretty print. Used to print objects in different orders and data structures.

 pprint.pprint(name): Will take object called name and reformat it into a readable table. This is

useful for visualizing data, as well as for piping the output of Python scripts using UNIX.

 pprint.pformat(name): Will return the same, but in a plain-text representation.

itertools: I’m a big fan of this one. It offers a huge array of functions for powerful iteration and

combinatorics. Here’s just one example using izip, which is similar to the base python function zip,

but more efficient, especially for large list objects:
 >>> L1 = [1,2,3]

>>> L2 = [2,4,6]

>>> for i,j in itertools.izip(L1,L2):

... print i,j

...

1 2

2 4

3 6

re: Re allows regular expressions to be written into your Python file.

 re.search(): re.search() searches a defined set of text for a defined pattern. For example:
 re.search('Bear', animals.txt)

 will search our animals.txt file for instances of the word bear. This type of regular expression

could be integrated into a loop to rapidly find bits of important text.

A note on hard-coding

On one hand, scripts should be black boxes. They should perform a task without the user knowing

how it was done. This concept is known as ‘information hiding,’ and it serves to protect the script from

ad hoc changes by the user which would preclude repeatability. On the other hand, if the script performs

too specific of a task and cannot be changed responsibly by the user, the user may be tempted to go in and

manually change something. A part of the script that must be changed by editing the script itself is known

as ‘hard coding.’ Avoid it as best you can and make your script flexible by adding variables that can take

input to change whatever you might want to change without editing the script. These include

sys.argv[] for scripts, and parameters for functions. Default parameter values are a powerful way to

control how functions behave.

