
Numbers. And Pythons.

A couple digressions

● iPython interpreter

A couple digressions

● Try/Except

A couple digressions

● Try/Except
○ How can I check input for errors without halting my

script?

A couple digressions

● Try/Except
○ How can I check input for errors without halting my

script?

with open('homework.csv') as f:
line_list = [line.strip().split(',') for line in f]
print line_list

A couple digressions

for line in line_list[1:]:
try:

int(line[2])
total += float(line[2])

except:
print "not a number, skipping", line[2]

A couple digressions

for line in line_list[1:]:
try: #Attempt the below operation

int(line[2])
total += float(line[2])

except: #If operation is impossible, do below
print "not a number, skipping", line[2]

Handling big data

● Big data is a total buzz word

Handling big data

● Big data is a total buzz word
● But many of our basic python approaches

don’t scale well

Numpy, Scipy and Pandas

● Numpy: Primarily for large amounts of
mathematical calculations

● Scipy: Many statistical functions of interest
to scientists

● Pandas: Built on Numpy, a library
contextualizing Numpy functions more
helpfully

Pandas

● Pandas allows you to access key pieces of
Numpy functionality

● While retaining the user-friendliness of
python
○ Excel support
○ Row and column names

Loading in Data

xl = pandas.ExcelFile('spreadsheet.xls')

no_xl = pandas.read_csv('homework.csv')

Loading in Data

xl = pandas.ExcelFile('spreadsheet.xls')

no_xl = pandas.read_csv('homework.csv')

Familiar: We are creating a file object, not
interacting with the data.

Pandas DataFrame objects

● 2D
● Labelled!
● Name:entry pairs
● read_csv imports as DataFrame

Pandas DataFrame objects

● 2D
● Labelled!
● Name:entry pairs

Pandas DataFrame objects

● We have to coerce Python to do read in
Excel appropriately

 xl.sheet_names
df = xl.parse('Sheet1', index_col=0)

What’s cool about DataFrames?

● Slicing and dicing
● Viewing data
● Finding object types

Viewing your data

df.head()

#Show the first five entries

Viewing your data

df.head()

#Show the first five entries

df.tail()
#Show the last 5

Data Types

● Remember when we checked if each entry
in a column was the right type?

● How do you know what type to expect?

Data Types

df.index

#Tells you what the different row names and
their types are

Data Types

df.describe()

#Get a quick look at the stats of our numeric
columns

Data Types

df.dtypes

#Return a list of the data types of each column

Data Types

df.ix[:,'Observations']

#Return the column in question and its type

Data Types

● These two are odd, yes?
● The first returns that the dtype is “object”

○ Porque?

Data Types

● These two are odd, yes?
● The first returns that the dtype is “object”

○ Porque?
○ Mixed type - string + int

Data Types

● These two are odd, yes?
● The first returns that the dtype is “object”

○ Porque?
○ Mixed type - string + int

● But what is ‘int64’?

Data Types

● These two are odd, yes?
● The first returns that the dtype is “object”

○ Porque?
○ Mixed type - string + int

● But what is ‘int64’?
● And why is ‘Expenditure’ a float64 with

missing data?

More slicing

df.ix[1,['Observations','Species']]

df.ix[:,0]
Type = Series

Coordinate Slicing
● df[start:stop]

Take five. Try slicing your data in different
ways.
Try assigning different slices to variables and
doing math or error checking with them
● Also, try sum() or df.mean() with a list or

series

Nota Bene

● That’s all a bit tough
● And really the only way to get good at that

sort of indexing is to practice

The Pandas-Numpy interface

● Numpy has a lot of really smart numerical
functions.

● But the interface that makes those
operations possible also makes interaction
hard

The Pandas-Numpy interface

b = df.ix[:,'Expenditure'] #bind column to b
numpy.unique(b) #Distill rapidly to unique
values

Only works with numbers!

The NaN

● NaN is “Not a Number”
● This is a formulation that does not store your

NaN value
● These are stored as boolean values

NaN methods

for x in b:
if numpy.isnan(x):

 print "This ain't a number!"

#Real quick test if something is NaN

NaN Methods

df.fillna(0)
#Fill missing values with a zero

NaN Methods

df.fillna(df.mean())
#Fill missing values with the mean of the row

NaN Methods

df['Observations'].convert_objects
(convert_numeric=True)
#Change non-numeric characters to NaN
df.fillna(df.mean())
And fill them with the average

Random Subsets

import random
cols = random.sample(df.columns, 3)
#Get 3 random columns
rando_df = df.ix[:, cols]
#Extract all rows associated with those
columns

a = np.random.randint(5, size=(85, 300))
#create a 85 row by 300 column data set made
up of random values between 0 and 5
a[1:10,1:3]
#Since we don’t have labels, we index by
location

Output

DataFrame.to_csv(filename)

Pandas has many fancy output options. See
here for more:
http://pandas.pydata.org/pandas-
docs/stable/generated/pandas.DataFrame.
to_csv.html

Challenge Problem

Using the random matrix we just made, the
commands we’ve learned and the table on the
wiki, create a short pipeline to do some
subsetting and a mathematical operation

Docs

Pandas Documentation
Some Stats in Scipy
Numpy Tutorial made by the Scipy people

http://pandas.pydata.org/pandas-docs/stable/index.html
http://pandas.pydata.org/pandas-docs/stable/index.html
http://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
http://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://wiki.scipy.org/Tentative_NumPy_Tutorial

Example

R, Python and Climatology

A side-by-side comparison for data crunching in
R and Python. Helpful example!

http://climateecology.wordpress.com/2014/02/10/a-side-by-side-example-of-r-and-python/
http://climateecology.wordpress.com/2014/02/10/a-side-by-side-example-of-r-and-python/

Again …

These libraries are huge!
And kind of grab-baggish
Really, the best way to learn is practice and to
look in pandas, scipy and numpy and see if the
function you want is there.

Homework

● On your own data:
○ Make three different subsets of the data
○ Replace missing values in two ways
○ Do a little math on your subsets with replaced data
○ What are the strengths and weaknesses of each

way you replaced missing data?
■ Save subsets with replacements in a file and

send to us

Homework

● On a random matrix:
○ Try all the operations that you did with your own

personal data.
○ Do they all work? If not, why? Google your error

messages or check with us about why.

Homework

Lastly:
https://docs.google.com/spreadsheet/ccc?
key=0And3uqWBFJNxdFlYeVR5NHNRdGRtZl
BfQ2VYc1lNNVE&usp=sharing

Add some nonsense to this spreadsheet!

https://docs.google.com/spreadsheet/ccc?key=0And3uqWBFJNxdFlYeVR5NHNRdGRtZlBfQ2VYc1lNNVE&usp=sharing
https://docs.google.com/spreadsheet/ccc?key=0And3uqWBFJNxdFlYeVR5NHNRdGRtZlBfQ2VYc1lNNVE&usp=sharing
https://docs.google.com/spreadsheet/ccc?key=0And3uqWBFJNxdFlYeVR5NHNRdGRtZlBfQ2VYc1lNNVE&usp=sharing
https://docs.google.com/spreadsheet/ccc?key=0And3uqWBFJNxdFlYeVR5NHNRdGRtZlBfQ2VYc1lNNVE&usp=sharing

Homework

Fill this spreadsheet with garbage:

Spreadsheet

https://docs.google.com/spreadsheet/ccc?key=0And3uqWBFJNxdFlYeVR5NHNRdGRtZlBfQ2VYc1lNNVE#gid=0
https://docs.google.com/spreadsheet/ccc?key=0And3uqWBFJNxdFlYeVR5NHNRdGRtZlBfQ2VYc1lNNVE#gid=0

