
A Framework for Software Preservation   91

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

A Framework for Software Preservation

Brian Matthews, Arif Shaon, Juan Bicarregui and Catherine Jones,
e-Science Centre, Science and Technology Facilities Council,

Rutherford Appleton Laboratory, Oxon, UK

   Abstract
Software  preservation  has  not  had  detailed  consideration  as  a  research  topic  or  in  practical 
application. In this paper,  we present a conceptual  framework to capture and organise the main 
notions of software preservation, which are required for a coherent and comprehensive approach. 
This framework has three main aspects. Firstly a discussion of what it means to preserve software 
via a  performance model  which considers how a software artefact can be rebuilt from preserved 
components and can then be seen to be representative of the original software product. Secondly the 
development  of a  model of  software artefacts,  describing the basic components of  all  software, 
loosely based on the FRBR model for representing digital artefacts and their history within a library 
context. Finally, the definition and categorisation of the properties of software artefacts which are 
required to ensure that the software product has been adequately preserved. These are broken down 
into a number of categories and related to the concepts defined in the OAIS standard.  We also 
discuss our experience of recording these preservation properties for a number of BADC software 
products, which arose from a series of case studies conducted to evaluate the software preservation 
framework, and also briefly describe the SPEQS toolkit,  a tool to capture software preservation 
properties within a software development.1

1 This paper is based on the paper given by the authors at the 5th International Digital Curation 
Conference, December 2009; received November 2009, published June 2010.
The International Journal of Digital Curation is an international journal committed to scholarly excellence and
dedicated to the advancement of digital curation across a wide range of sectors. ISSN: 1746-8256 The IJDC is
published by UKOLN at the University of Bath and is a publication of the Digital Curation Centre.



92   A Framework for Software Preservation

Introduction
Software is a class of electronic object which is frequently the result of research 

and is often a vital pre-requisite to the preservation of other electronic objects. 
However, there has only been limited consideration of the preservation of software as a 
digital object in its own right. This is mainly owing to the inherent complexity of 
software products - a typical software artefact has a large number of components 
related in a dependency graph, with specification, source and binary components, and a 
highly sensitive dependency on the operating environment. Handling this complexity 
is a major barrier to the preservation of software, especially for people who were not 
involved in its development but nevertheless want to maintain access to software. 
Further, the preservation of software is frequently seen as a secondary activity and one 
with limited usefulness.

Software preservation is thus a relatively underexplored topic of research and 
there is little practical experience in the field of software preservation as such. Given 
the relative immaturity of the field, there is a need for both a conceptual analysis of the 
process of software preservation, and experience and tools in undertaking preservation 
in practice.

The work presented in this paper represents a pair of studies into software 
preservation2, which looked at a number of software repositories and other groups 
engaged in maintaining software over the long term (Matthews, McIlwrath, Giaretta, 
and Conway, 2008). As part of this study, we have developed a framework to express 
the notion of software preservation and set out some baseline concepts of what it 
means to preserve software. The framework also develops and extends the notion of 
performance and emphasises the notion of adequacy and relates it to authenticity; 
narrows the notion of significant property to those properties which are testable within 
a performance. Additionally, it considers the concepts introduced within the Open 
Archival Information System (OAIS) reference model (Consultative Committee for 
Space Data Systems (CCSDS), 2002), and uses them within the framework to 
categorise the preservation properties identified within the model. In our study, this 
framework was developed in conjunction with a number of analyses into software 
preservation practice, and some experimental tool development. In this paper we 
concentrate on the conceptual framework. We briefly discuss the exemplars and tools. 
For further details on the methodological and exemplar results of the study see 
Matthews, Shaon, Bicarregui, Jones and Woodcock (2009a, 2009b).

Aspects of Software Preservation
Long-term preservation of software has the following four major aspects:

• Storage. A copy of a software “product” needs to be stored for long-term 
preservation. As a software product is a complex digital object with 
potentially a large number of components, what is actually preserved is 
dependent on the software preservation approach taken. Whatever the 
exact items stored, there should be a strategy to ensure that the storage is 
secure and maintains its authenticity over time, with appropriate strategies 
for storage replication, media refresh, format migration etc. as necessary.

2 Joint Information Systems Committee (JISC) study into the Significant Properties of Software (2007): 
http://www.jisc.ac.uk/whatwedo/programmes/preservation/2008sigprops.aspx and 
Project Tools and Guidelines for Preserving and Accessing Software Research Outputs (2007-9): 
http://www.jisc.ac.uk/whatwedo/programmes/reppres/tools/software.aspx

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

http://www.jisc.ac.uk/whatwedo/programmes/preservation/2008sigprops.aspx%20
http://www.jisc.ac.uk/whatwedo/programmes/reppres/tools/software.aspx


Brian Matthews et al.   93

• Retrieval. In order for a preserved software product to be retrieved at a 
future date, it needs to be clearly labelled and identified, within a suitable 
catalogue. This should provide search on its function (e.g. terms from 
controlled vocabulary or functional description) and origin.

• Reconstruction. The preserved product can be reinstalled or rebuilt within 
a sufficiently close environment to the original that it will execute 
satisfactorily. For software, this is a particularly complex operation, as 
there are a large number of contextual dependencies to the software 
execution environment which are required to be satisfied before the 
software will execute at all.

• Replay. In order to be useful at a later date, software needs to be replayed, 
or executed, and perform in a manner which is sufficient close in its 
behaviour to the original. As with reconstruction, there may be 
environmental factors which may influence whether the software delivers 
a satisfactory level of performance.

While other digital objects also require these aspects, for software, reconstruction 
and replay are particular concerns, as more than other objects we are more interested in 
what software does than what software is.

Performance Model and Adequacy
Given the uncertainty of long-term digital preservation, it is necessary to be able 

to measure the effectiveness of a digital preservation strategy. In the case of software 
we propose to base this on the notion of how a sufficient level of performance 
preserves the required characteristics of software. Performance as a model for the 
preservation of digital objects was defined by the National Archives of Australia 
(NAA) (Heslop, Davis, & Wilson, 2002) to measure the effectiveness of a digital 
preservation strategy. Noting that for digital content, technology (e.g. media, hardware, 
software) has to be applied to data to render it intelligible to a user, they define a 
model as in Figure 1. Here Source data has a Process applied to it (in the case of 
digital data some combination of hardware and software) to generate a Performance, 
where meaning is extracted by a user. Different processes applied to a source may 
produce different performances. However, it is the properties of the performance 
which need to be considered and can arise from a combination of the properties of the 
source with the technology applied in the processing.

 

Figure 1. NAA Performance Model.

In general, the performance of a software product is the execution of the binary 
files associated with the product on some hardware platform configured in some 
architecture to provide the end experience for the user. However, the processing stage 
depends on the nature of the software artefacts preserved which have differing 
reconstruction and replay requirements. For example, in the case where binary is 
preserved, the process generating the performance requires the original operating 
software environment and possibly the hardware too, or else emulating that software 
environment on a new platform. In this case, the emphasis is usually on performing as 
closely as possible to the original. On the other hand, when source code and 
configuration and build scripts are preserved, then a rebuild process can be undertaken, 

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

Source PerformanceProcess User



94   A Framework for Software Preservation

using later compilers and linkers on a new platform, with new versions of libraries and 
operating systems. In this case, we would expect that the performance would not 
necessarily preserve all the properties of the original (e.g. systems performance or 
exact look and feel of the user interface), but have some deviations from the original.

Thus, a software performance can result in some properties being preserved and 
others deviating from the original or even being disregarded altogether. Therefore, in 
order to determine the value of a particular performance, we define a notion of 
Adequacy.

A software product (or indeed any digital object) can be said to perform 
adequately relative to a particular set of features (“significant properties”), if in a 
particular performance (that is after it has been subjected to a particular process) it  
preserves that set of significant properties to an acceptable tolerance.

This notion of adequacy is usually viewed as an aspect of the established notion of 
Authenticity of preservation (i.e. that the digital object can be identified and assured to 
be the object as originally archived). However, we feel that it is useful to separate these 
two notions in order to establish a more lucid requirement specification of long-term 
preservation of software. For this, we use the premise that the term Authenticity in 
long-term preservation essentially signifies the level of trust between a preserved 
software product and its future end users. From the perspective of an end user of a 
software product, this trust is primarily associated with the ability to trace the 
provenance and verify the fixity information of the software. For example, a preserved 
software product with comprehensively documented provenance history, including 
history of original and custodianship record, and verifiable fixity information, through 
the use of checksums, might establish in its users a sense of trust of the body 
responsible for its preservation. But this “trusted preservation” does not guarantee a 
reliable behaviour from the software once reconstructed in future; it might incur a loss 
of some of its original features during its reconstruction process. However, the 
software could still be used for the remaining features retained after reconstruction, 
which could be sufficient to extract an acceptable level of performance from the 
software. An example of such software is the emulated version of the 1990’s DOS-
based computer game Prince of Persia3. While some of the operations do not always 
work on the emulator and the original appearance of the game is also somewhat lost, it 
is possible to run the emulator to play the complete game on a contemporary computer 
platform. The term Adequacy introduced here is intended to represent this particular 
concept. As we shall see below, by measuring the adequacy of a particular 
performance of a software product, we can thus determine how well the software has 
been preserved and replayed.

Performance of software and of data
A further aspect of the notion of software performance is that the measure of 

adequacy of the software is closely related to the performance of its input data. 
Moreover, the purpose of software is (usually) to process data, so the performance of a 
software product becomes the processing of its input data. Thus, applying the NAA 
performance model to software, we illustrate the relationship between software and its 
input data as in Figure 2. Note that we have reversed the arrow between performance 
and user to reflect the information flow. Further, there is an interaction between the 

3 Best Old Games | Prince of Persia Download:
http://www.bestoldgames.net/eng/old-games/prince-of-persia.php

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

http://www.bestoldgames.net/eng/old-games/prince-of-persia.php


Brian Matthews et al.   95

user and the software performance, reflecting the user’s interaction with the software 
product during execution, changing the data processing and thus its performance.

Figure 2. Performance model of software and its input data.

So for example, in the case of a word processing product which is preserved in a 
binary format, which is processed via operating system emulation, the performance of 
the product is the processing and rendering of word processing file format data into a 
performance which a (human) user can experience via reading it off a display. The user 
can then interact with the processing (via for example entering, reformatting or 
deleting text) to change the data performance. Thus the measure of adequacy of the 
software is the satisfaction of the performance to the user when it is used to process 
input data, and thus how well it preserves the significant properties of its input data, 
and also preserving a known change in the performance which results from user 
interaction with the processing.

Thus, the adequacy of different preservation approaches is dependent upon the 
performance of the resulting replay on data. As the software has to be able to produce 
an adequate performance for any valid input date, the adequacy can be established by 
performing trial executions against representative test data covering the range of 
required behaviour (including error conditions). Additionally, the adequacy of 
preservation of a particular property can be established by testing against pre-specified 
suites of test cases with the expected behaviour, and pre-specified user interactions to 
change the data performance in known ways.

The Conceptual Framework
In order to express the properties of software that need to be preserved for its 

effective long-term preservation, we have developed a conceptual framework to 
capture the approach taken to software preservation and the structuring of the software 
artefact and the significant properties of software for preservation.

A Conceptual Model for Software
Various approaches to digital preservation have been proposed and implemented, 

usually as applied to data and documents. While these approaches to preservation vary 
in terms of implementation and other related technical aspects, they share in common 
an attempt to identify the additional information (i.e. metadata) needed to aid the 
preservation process. Examples include Functional Requirements for Bibliographic 
Records (FRBR) (International Federation of Library Associations (IFLA) Study 
Group, 1998), Preservation Metadata: Implementation Strategies (PREMIS) (PREMIS 
Working Group, 2005), and OAIS (CCSDS, 2002). We recognise that a conceptual 

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

Softw are 
Source

Softw are 
Performance/ 

Data 
Processing

Softw are 
Processing

User
Data 

Source
Data 

Performance



96   A Framework for Software Preservation

data model is required to determine the level of granularity at which preservation 
properties of software can be identified, and provide an understanding of the 
relationship between digital objects, thus giving traction on handling the complexity of 
the objects, a particularly important aspect in handling software. Therefore, we have 
developed a general model for software digital objects that is intended to provide a 
comprehensive view of the underlying dependencies of software, and thus help 
identify its preservation properties.

We define a general model for software consisting of four major conceptual 
entities in analogy with the FRBR model, which together describe a complete 
Software System. These are Product, Version, Variant and Instance (Figure 3).

Product: The product is the whole top-level entity of the system, and is how the 
system may be commonly or informally referred to. Products can vary in size and can 
range from a single library function (e.g. a function in the NAG library4), to a very 
large system with multiple sub-products with independent provenances (e.g. Linux).

Version: A version of a software product is an expression of the product which 
provides a single coherent presentation of the product with a well defined functionality 
and behaviour. Note also that in composite products, the sub-products will themselves 
have a number of versions which will be related to versions of the complete product. 
These releases will not necessarily be synchronised, so the relationship between 
versions of sub-products need to be captured. 

Figure 3. The Software Component Conceptual Model.

Variant: Versions may have a number of different variations to accommodate 
different operating environments, thus we define a Variant of the product to be a 
manifestation of the system which changes in the software operating environment, for 
example target hardware platform, target operating system, library, and programming 
language version. In this case, the functionality of the version is maintained as much as 
is practical; however, due to different behaviour supported by different platforms, 
there may be variations in behaviour, in error conditions and user interaction (e.g. the 
look and feel of a graphical user interface).

4 Numerical Algorithms Group: http://www.nag.co.uk/

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

http://www.nag.co.uk/


Brian Matthews et al.   97

In practice, Version and Variant may be difficult to distinguish: changes in 
environment are likely to change the functionality; new versions of software are 
brought out to cope with new environments. It may be arguable that in some 
circumstances Versions are subordinate to Variants, and in others we may wish to omit 
one of these stages such as software which is only ever targeted at one platform. But it 
is worth distinguishing the two levels, as it makes a distinction between adaptations of 
the system largely to accommodate change in functional properties (versions), with 
those which are largely to accommodate change in properties of the operating 
environment (variants).

Instance: An actual physical instance of a software product which is to be found 
on a particular machine is known as an Instance. It may be also be referred to as an 
installation, although there is no necessity for the product to be installed; a master copy 
stored at a repository under a source-code management system may well not be 
executable within its own environment.

Software Components
All of the entities in the above conceptual model of software which form a 

software system are composite. Some of them may be subsystems, with sub-products. 
All systems however, will be constructed out of many individual components. A 
component is a storable unit of software which when aggregated and processed 
appropriately, forms the software system as a whole. Logical components typically 
(but not necessarily always) roughly correspond with a physical file (a unit of storage 
within an operating system’s memory management). However, multiple components 
can be stored within in one file (e.g. a number of subroutines within one file) or across 
a number of files (e.g. help system or tutorial stored within a number of HTML files). 
Components may also be formed of a number of different digital objects, (e.g. text 
files, diagrams, sample data) which themselves would have preservation properties 
associated with their data format. A comprehensive preservation strategy for the full 
software system would have to consider those digital objects as well.

In this model, we give a number of different kinds of software component 
associated with a product, version or variant in the conceptual model of software in 
Figure 3. Note that this list is not exhaustive, and additional kinds of component may 
be identified. Of particular note is “Test Suite”, which represents examples of 
operation of the product and expected behaviour arising from operation of the product. 
A test suite is typically produced to test the conformance of the product to expected 
behaviour in a particular installation environment. Thus, a test suite of a software 
product would play a significant role in measuring the adequacy of its preservation.

The OAIS Reference Model and Software Preservation
The Reference Model for an Open Archival Information System (OAIS) is an ISO 

standard that is primarily concerned with the long-term preservation of digitally 
encoded information. In essence, the underlying notions of the OAIS reference model 
should be applicable to the long-term preservation of software artefacts as 
fundamentally (i.e. at bit level) they are in fact digitally encoded information.

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010



98   A Framework for Software Preservation

Therefore, as illustrated in Figure 4, the OAIS information model can be applied 
to the process of rendering a preserved Data Source on a future technological platform, 
where the rendering of the data requires the use of a particular software product, which 
in turn requires a specific complier, to be rebuilt from its preserved state. In short, the 
OAIS defined Descriptive Info, Representation Information (RI) and Preservation 
Description Information (PDI) (CCSDS, 2002) can be used to retrieve (discover and 
access), reconstruct (compile source code), and replay (verify authenticity and run) a 
software object respectively. 

Figure 4. The Relationship between the OAIS Information Model and the Software 
Performance Model.

However, once re-built, Significant Properties (SPs) about the software are 
required to measure the adequacy of the software in processing the Data Source, which 
in turn measures the performance of the compiler in re-building the software from its 
source code. This is not comprehensively addressed in the OAIS model but may be 
considered amongst the Preservation Description Information of software for 
demonstrating the satisfaction of significant properties, and thus viewed as an 
additional component of the OAIS information object in the context of long-term 
software preservation.

Preservation Properties of Software
In considering what preservation properties are needed for software, we need to 

consider the following seven general categories of features which characterise software 
(Table 1). These categories apply to each of the four major conceptual entities of a 
software system defined in the conceptual model of software .We also try to 
demonstrate the relationship of each of these categories to the relevant OAIS 
information entity.

Category Description Examples Equivalent OAIS 
Terms 

Functionality • Description of the typical 
characteristics of soft
ware.

• Useful for efficient dis
covery and accessibility 
of the software in future

• Description of inputs and 
outputs

• Description of operation 
and algorithms

• Description of the do
main addressed

• Descriptive In
formation

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010



Brian Matthews et al.   99

Software 
Composition

• Description of the com
ponents that constitute 
software

• Useful for rebuilding and 
reusing the software in 
future

• Detailed history of ver
sion changes and other 
significant changes that a 
software product has un
dergone facilitates veri
fication of its authenti
city in future.

• A typical record: binary 
files, source code, user 
manuals and tutorials. 

• A more complete record: 
requirements and design 
documentation, test cases 
and harnesses, proto
types, formal proofs.

• Representation 
Information

• Preservation De
scription Inform
ation (PDI)

Provenance 
and Owner
ship

• Different software com
ponents have different 
and complex licensing 
conditions. 

• Needs to be included in 
the preservation planning

• Software owner and li
cence information, e.g. 
Microsoft for MS 
Word®

• Provenance 
Information 
category of 
Preservation 
Description 
Information 
(PDI)

User Interac
tion

• Description of expected 
mode of interaction 
between user and soft
ware

• The ‘Look and Feel’ and 
the model of user interac
tion can play a signific
ant role in the usability 
of the software and there
fore should be con
sidered among its Signi
ficant Properties.

• The inputs which a user 
enters through a key
board, pointing device or 
other input devices, such 
as web cameras or 
speech devices

• The outputs to screens, 
plotters, sound pro
cessors or other output 
devices

• Not  
comprehensively 
addressed in the  
OAIS – may be  
categorized as 
the Significant  
Properties of  
software

Software En
vironment

• Description of the envir
onment that the correct 
operation of the software 
depends on

• Dependencies between 
software environment re
lated entities and history 
of changes made to them

• Hardware platform, oper
ating system, program
ming languages and com
pilers, software libraries, 
other software products, 
and access to peripherals.

• Binaries usually require 
an exact match of the en
vironment to function

• Representation 
Information

Software Ar
chitecture

• Plays a significant part in 
the reproducibility of the 
original functionality and 
features of software

• Client/server, peer-to-
peer, and Grid systems 
all require different 
forms of distributed sys
tem interaction which 
would require the config
uration of hardware and 
software to be repro
duced to reproduce the 
correct behaviour.

• Representation 
Information

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010



100   A Framework for Software Preservation

Operating 
Performance

• The performance of the 
software with respect to 
its use of resources (as 
opposed to its perform
ance in replaying its con
tent)

• Plays a significant part in 
the reproducible beha
viour of software.

• Contributes towards the 
information needed to 
measure the overall ad
equacy of software pre
servation in future

• Speed of execution, data 
storage requirements.

• In some circumstances, 
we may wish to replay 
the software at the ori
ginal operating perform
ance rather than a later 
improved performance.

• A notable example of 
this is games software, 
which if reproduced at a 
modern processor’s 
speed would be too fast 
for a human user to play. 

• Not  
comprehensively 
addressed in the  
OAIS – may be  
categorized as 
the Significant  
Properties of  
software

Table 1. Different categories of preservation properties of software.

Applying the Software Preservation Model to the BADC 
Software

We carried out a series of case studies into existing practices of software 
preservation and maintenance in order to validate the applicability of the software 
preservation model. Of particular note among these studies is the one conducted on the 
British Atmospheric Data Centre (BADC)5, which involved evaluating the model 
against a number of BADC software. For this, we tried to collect the appropriate 
value(s) for each of the preservation properties defined in the framework for each 
major conceptual entity of software. Table 2 outlines the preservation properties of 
“Product” entity of the BADC Web Feature Service6 identified as part of the BADC 
case study.

5 The British Atmospheric Data Centre: http://badc.nerc.ac.uk/home/index.html
6 The BADC WFS Enables retrieving and updating geospatial data encoded in Geographic Markup 
Language (GML): http://www.opengeospatial.org/standards/gml), or any GML-based formats, 
irrespective of the location or storage media of the data. The implementation is based on the Open 
Geospatial Community (OGC) standard for Web Feature Service: 
http://www.opengeospatial.org/standards/wfs

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/gml
http://badc.nerc.ac.uk/home/index.html


Brian Matthews et al.   101

Property 
Category

Software Property
Name Value

Functionality Purpose Enabling publishing and querying of Geospatial data 
on the web using open standards

Keyword Web feature service

Provenance 
and 
Ownership

package_name GeoServer

Owner GeoServer and SeeGrid
Licence

GNU GENERAL PUBLIC LICENSE, Version 2

http://geoserver.org/display/GEOS/License

Location http://geoserver.org/display/GEOS/Welcome

Software 
Architecture

Overview The software architecture is comprised of a series of 
modules for handling requests for geospatial data as 
geographical features across the web using platform-
independent  calls,  such as  HTTP Get  and Post  and 
SOAP.
http://geoserver.org/display/GEOSDOC/1+GeoServer
+Architecture 

Software 
Composition

Software 
overview 

http://geoserver.org/display/GEOS/What+is+Geoserv
er

Tutorials Installation: 
http://geoserver.org/display/GEOSDOC/1+Getting+St
arted

Requirements Operating  system:  Window/Linux/Unix,  Minimum 
RAM: 512 megabyte, Java 1.5 or higher

Table 2. “Product” properties of BADC GeoServer/WFS.

The experience of applying the framework for software preservation to the BADC 
WFS/GeoServer software shows that the framework is sufficiently relevant to the 
software (e.g. GeoServer) used as well as being adequate in terms of the information 
recorded. However, it also highlights the necessity to have considerable knowledge of 
both the framework and software in question to accurately apply the framework to the 
software. This indicates a need for tools to facilitate the recording of software 
preservation properties by providing guidelines which, for example, explain the 
underlying concepts of the framework in a user-friendly manner.

SPEQS 
In the light of the findings from the BADC case study, we have developed a tool, 

called Significant Properties Editing and Querying for Software (SPEQS) to 
support the systematic collection of preservation properties for software. In essence, 
SPEQS exemplifies how the capture of the preservation properties identified in the 
software preservation framework could be integrated within the software development 
lifecycle. It has been implemented in Java as a plug-in for Eclipse7, a widely used open 
source interactive software development environment, to enable software developers to 
record, edit and query preservation properties of software (as defined in Table 1) 
directly from within the Eclipse environment. It also provides software developers 
7 Eclipse: http://www.eclipse.org/

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

http://www.eclipse.org/
http://geoserver.org/display/GEOSDOC/1+Getting+Started
http://geoserver.org/display/GEOSDOC/1+Getting+Started
http://geoserver.org/display/GEOS/What+is+Geoserver
http://geoserver.org/display/GEOS/What+is+Geoserver
http://geoserver.org/display/GEOSDOC/1+GeoServer+Architecture
http://geoserver.org/display/GEOSDOC/1+GeoServer+Architecture
http://geoserver.org/display/GEOS/Welcome
http://geoserver.org/display/GEOS/License


102   A Framework for Software Preservation

with suitable guidelines for accurately recording significant properties of software. We 
envisage that this approach of enabling capturing preservation properties of software 
during its development lifecycle would contribute towards ensuring the accuracy of the 
information recorded.

Architecture Overview of SPEQS
SPEQS uses an ontology representation of the conceptual model for software, 

written in OWL (Web Ontology Language)8 for recording preservation properties of 
software (SPs) in RDF9 format and querying the recorded SPs using SPARQL10, the 
query language for RDF. The SPEQS architecture consists of four principal 
components: the SP Editor, the SP Query Interface, the SPEQS Data Store and a 
software repository, such as Subversion11 (Figure 5).

Figure 5. An Architectural View of SPEQS.

The SP Editor and the SP Query Interface are Graphical User Interfaces (GUIs) 
implemented using the Java Swing API12 and accessible from the SPEQS menu of 
Eclipse toolbar. The SP Editor uses the Jena13 OWL/RDF API to enable recording and 
updating of SPs for software projects defined within an Eclipse environment. And the 
SP Query Interface enables querying, viewing and analysing the recorded SPs using 
the Jena SPARQL query engine. 

The SPEQS Data Store is a relational database that consists of a RDF Triple 
Store14 for storing SP records and a standard data storage entity for storing other meta-
information (e.g. developer name, creation date etc.) associated with a software 
project. In addition, SPEQS interacts with software repositories and management 
8 OWL: http://www.w3.org/TR/owl-features/
9 Resource Description Framework (RDF): http://www.w3.org/RDF/
10 SPARQL Query Language for RDF: http://www.w3.org/TR/rdf-sparql-query/
11 Subversion: http://subversion.apache.org/
12 Java Swing: http://java.sun.com/j2se/1.5.0/docs/guide/swing/index.html
13 Jena – A Semantic Web Framework for Java: http://jena.sourceforge.net/
14 Databases specially configured to store and enable querying large RDF models.

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

http://jena.sourceforge.net/
http://java.sun.com/j2se/1.5.0/docs/guide/swing/index.html
http://subversion.apache.org/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/RDF/
http://www.w3.org/TR/owl-features/


Brian Matthews et al.   103

systems, such as Subversion, to keep track of the changes made to software and 
ensuring accurate and consistent association with its preservation properties. At 
present, SPEQS only supports Subversion based software projects.

Evaluation of SPEQS
SPEQS was evaluated against a number of software products. In particular, it was 

effectively used in the CASPAR (Cultural Artistic and Scientific knowledge for 
Preservation, Access and Retrieval)15 project for capturing preservation properties of 
SAO Explorer software that enables visualising and analysing Ionosonde data. The 
preservation properties of SAO Explorer captured using SPEQS contributed towards 
modelling a comprehensive preservation network for the Ionosonde data (Conway, 
Dunckley, McIlwrath, and Giaretta, 2009).

However, there is still considerable scope for further improvement in SPEQS. In 
particular, SPEQS needs to incorporate an efficient mechanism for semantically 
validating values asserted in a SP record. This could involve integrating SPEQS with a 
suitable controlled vocabulary. Furthermore, the SPEQS Data Store should be 
subjected to effective long-term preservation technique, e.g. by integrating it with an 
efficient long-term preservation archive, to ensure longevity of the SP records. 
Additionally, to cater for a wider range of software projects, SPEQS would benefit 
from incorporating support for other widely used software development environments, 
such as NetBeans16 and other software repositories, such as SourceForge17 and CVS18. 
Despite these shortcomings, we believe that SPEQS demonstrates the potential of a 
comprehensive software system that would facilitate capturing, validating, and 
querying preservation properties of software.

Conclusions
In this report we have developed a conceptual framework to express a rigorous 

approach to software preservation. It develops and extends the notion of performance 
and emphasises the notion of adequacy and relates it to authenticity; proposes a 
measurement of adequacy to the preservation of properties which are testable within a 
performance; and uses the concepts introduced within the OAIS model within the 
framework to categorise the identified preservation properties. Thus this framework 
can be seen as a specialisation of the OAIS model to handle the case of software. 

We believe that this is a general and principled approach which can cover the 
preservation needs of a wide range of different software products, including modern 
distributed systems and service oriented architectures, which are typically built of pre-
existing frameworks and have a large number of dependencies on a widely distributed 
network of services, many of which are outside the control of the typical user (e.g. 
DNS services, proxies, web services provided by external organisations such as 
Amazon Web Services19). Further, the performance model presented here, which has a 
notion of user feedback to influence the performance, may represent an approach to 
preserving the user interface and the user interaction model, although work is required 
to further develop that notion.
15 CASPAR Project: http://www.casparpreserves.eu
16 NetBeans: http://www.netbeans.org/
17 SourceForge: http://sourceforge.net/
18 Concurrent Versions System (CVS): http://www.nongnu.org/cvs/
19 Amazon Web Services: http://aws.amazon.com/

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

http://aws.amazon.com/
http://www.nongnu.org/cvs/
http://sourceforge.net/
http://www.netbeans.org/
http://www.casparpreserves.eu/


104   A Framework for Software Preservation

Further work is required to test this model and to provide tools. Some initial work 
has been undertaken to integrate the capture of preservation properties of software 
within a software development process, and also to use the framework within case 
studies. Further work on case studies is required, especially across a range of software 
types to cover the diversity of software and to consider how to support the preservation 
of legacy software.

Acknowledgements
We would like to thank our colleagues David Giaretta, Esther Conway, Steven 

Rankin, Brian McIlwrath and other members of the Digital Curation Centre and 
CASPAR projects for their advice and discussions, and to Jim Woodcock of the 
University of York for contributing to case studies. The work was carried out under the 
JISC study into the Significant Properties of Software and the JISC project Tools and 
Guidelines for Preserving and Accessing Software Research Outputs.

References 
Consultative Committee for Space Data Systems (CCSDS). (2002, January). 

Reference Model for an Open Archival Information System (OAIS). 
Recommendation for Space Data System Standards. CCSDS Blue Book. 
Washington, D.C.:CCSDS Secretariat. Retrieved July 27, 2009, from 
http://public.ccsds.org/publications/archive/650x0b1.pdf

Conway, E., Dunckley, D., McIlwrath, B., & Giaretta D. (2009, December). 
Preservation network models: Creating stable networks of information to 
ensure the long term use of scientific data. Ensuring Long-Term Preservation 
and Adding Value to Scientific and Technical Data (PV 2009). Villafranca del  
Castillo, Madrid, Spain. Retrieved November 13, 2009, from 
http://epubs.cclrc.ac.uk/bitstream/4314/PV09_Conway_PNM.pdf

Heslop, H., Davis, S., & Wilson, A. (2002). An Approach to the Preservation of 
Digital Records. National Archives of Australia. Retrieved July 29, 2008, from 
http://www.naa.gov.au/Images/An-approach-Green-Paper_tcm2-888.pdf

International Federation of Library Associations (IFLA) Study Group. (1998). 
Functional Requirements for Bibliographic Records. Retrieved July 27, 2009, 
from http://www.ifla.org/VII/s13/frbr/frbr.pdf

Matthews, B.M., McIlwrath, B., Giaretta, D., & Conway, E. (2008). The Significant  
Properties of Software: A Study. In JISC report, 2008. Retrieved August 3, 
2009, from 
http://sigsoft.dcc.rl.ac.uk/twiki/pub/Main/SigSoftTalks/SignificantPropertiesofSoftware.doc

Matthews, B.M., Shaon, A., Bicarregui, J.C., Jones, C.M , Woodcock, J.C.P., Conway, 
E. (2009a). Towards a methodology for software preservation iPres 2009 The 
Sixth International Conference on Preservation of Digital Objects. October 
2009.

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

http://sigsoft.dcc.rl.ac.uk/twiki/pub/Main/SigSoftTalks/SignificantPropertiesofSoftware.doc
http://www.ifla.org/VII/s13/frbr/frbr.pdf
http://www.naa.gov.au/Images/An-approach-Green-Paper_tcm2-888.pdf
http://epubs.cclrc.ac.uk/bitstream/4314/PV09_Conway_PNM.pdf
http://public.ccsds.org/publications/archive/650x0b1.pdf


Brian Matthews et al.   105

Matthews, B.M., Shaon, A., Bicarregui, J.C., Jones, C.M , Woodcock J.C.P. (2009b, 
December). An approach to software preservation. PV 2009 Ensuring Long-
Term Preservation and Adding Value to Scientific and Technical Data.

PREMIS Working Group. (2005, May). Data Dictionary for Preservation Metadata. 
Retrieved July 27, 2009, from 
http://www.oclc.org/research/projects/pmwg/premis-final.pdf 

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

http://www.oclc.org/research/projects/pmwg/premis-final.pdf

