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What is a classifier?

A 38-gene expression classifier predictive of relapse-free survival (RFS) could
distinguish 2 groups with differing relapse risks: low (4-year RFS, 81%, n =
109) versus high (4-year RFS, 50%, n = 98; P < .001).

Taken from Kang et al. (2010).
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Classification by gene expression

Goal:
Given sample i , use measured gene expression levels
xig 2 R for g 2 {1, . . . , p} to assign class label yi .

Use vector notation xi to represent collection of all gene
measurements xig for sample i .

To keep things simple, consider only two-class problems (say,
“low-risk” vs. “high-risk”) so that yi 2 {0, 1}.

Define random variables X and Y of which xi and yi will be
regarded as particular realizations.

Model should yield P(Y = y | X = x) . . .
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Training and test sets

Select modeling strategy M and apply algorithm to find
parameters ✓ using a set Strain of samples such that

PM,✓(Y = yi | X = xi )

has high probability for the observed class labels yi for i 2 Strain.

However, what we really want is for model to accurately classify
samples j /2 Strain whose true classifications yj may not already
be known.

Generally (M,✓) will not perform as well on samples j /2 Strain as
it does on i 2 Strain.

Thus useful to apply (M,✓) to j 2 Stest where Stest \ Strain = ;
but where the {yj | j 2 Stest} are still known.



Listening to
what genes
are saying

Statistical
learning from

gene
expression

data

Introduction

Normalization

Feature
selection

Classification

knn

Linear
models

Naive Bayes

SVM

Other
methods

References

Training and test sets

Select modeling strategy M and apply algorithm to find
parameters ✓ using a set Strain of samples such that

PM,✓(Y = yi | X = xi )

has high probability for the observed class labels yi for i 2 Strain.

However, what we really want is for model to accurately classify
samples j /2 Strain whose true classifications yj may not already
be known.

Generally (M,✓) will not perform as well on samples j /2 Strain as
it does on i 2 Strain.

Thus useful to apply (M,✓) to j 2 Stest where Stest \ Strain = ;
but where the {yj | j 2 Stest} are still known.



Listening to
what genes
are saying

Statistical
learning from

gene
expression

data

Introduction

Normalization

Feature
selection

Classification

knn

Linear
models

Naive Bayes

SVM

Other
methods

References

Overfitting I: Resubstitution

Illustration of overfitting:
For i 2 {1, . . . , 100}, simulated data xi on pseudogenes
g 2 {1, . . . , 2500} from X ⇠ N (µ = 0,⌃ = I ).

Generated class labels yi from Y ⇠ Bern(p = 0.5) independently

of X.

Then selected top n 2 {10, 25, 50, 100} genes by t-test and fit
variety of classification models for Y using these genes. . .

Modeling Strategy AUC Accuracy Sensitivity Specificity PPV NPV

t-Test 10: Knn 0.943 0.82 0.893 0.727 0.806 0.842
t-Test 25: Knn 0.960 0.89 0.964 0.795 0.857 0.946
t-Test 50: Knn 0.985 0.92 0.982 0.841 0.887 0.974
t-Test 100: Knn 0.999 0.97 1.000 0.932 0.949 1.000

t-Test 10: Logistic 0.933 0.88 0.911 0.841 0.879 0.881
t-Test 25: Logistic 0.996 0.97 1.000 0.932 0.949 1.000
t-Test 50: Logistic 1.000 1.00 1.000 1.000 1.000 1.000
t-Test 100: Logistic 1.000 1.00 1.000 1.000 1.000 1.000

t-Test 10: Svm 0.981 0.92 0.946 0.886 0.914 0.929
t-Test 25: Svm 1.000 0.99 1.000 0.977 0.982 1.000
t-Test 50: Svm 1.000 1.00 1.000 1.000 1.000 1.000
t-Test 100: Svm 1.000 1.00 1.000 1.000 1.000 1.000
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Metrics—Binomial

There are many ways to measure performance for classifiers;
most are based only on the “discretized calls” ŷ

ŷM,✓, =

(
1 if PM,✓(Y = 1 | X = x) �  

0 otherwise

given some threshold  (e.g.,  = 0.5).

Given a sample set S of size |S | = N composed of:
TP true positive samples: y = ŷ = 1
TN true negative samples: y = ŷ = 0
FP false positive samples: y = 0, ŷ = 1
FN false negative samples: y = 1, ŷ = 0,

define
Accuracy fraction of calls correct

�TP+TN
N

�

Sensitivity fraction of calls correct when y = 1
� TP

TP+FN

�

Specificity fraction of calls correct when y = 0
� TN

TN+FP

�

PPV fraction of calls correct when ŷ = 1
� TP

TP+FP

�

NPV fraction of calls correct when ŷ = 0
� TN

TN+FN

�
.
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ŷM,✓, =

(
1 if PM,✓(Y = 1 | X = x) �  

0 otherwise

given some threshold  (e.g.,  = 0.5).
Given a sample set S of size |S | = N composed of:

TP true positive samples: y = ŷ = 1
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Metrics—Receiver Operating Characteristic (ROC)

Taken from Hess et al. (2006).

Could consider binomial
metrics over range of threshold
values  .

Receiver operating
characteristic (ROC) curve
does this for sensitivity and
specificity.

Area under ROC curve (AUC)
= probability that score
P(Y = 1 | X = x) of a
randomly chosen positive case
(y = 1) is higher than score of
a randomly chosen negative
case(y = 0).
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Cross-validation (CV)

But what if we don’t have a test set Stest lying around?

Can always split whatever sample set you have up into a test and
training set.

If not many samples available, might split samples S into S1 and
S2 and then try:

1. first train M on S1 to obtain parametrized model (M,✓1)
for testing on S2;

2. then train on S2 to obtain model (M,✓2) for testing on S1.

Unbiased performance estimate could then be obtained using the
predictions PM,✓2(Y | X) for samples in S1 and predictions
PM,✓1(Y | X) for samples in S2.
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k-fold cross-validation

This procedure can be generalized to split S up into k subsets Sk
for each of which:

1. a model (M,✓-k) is trained using training set S-k =
S

q 6=k
Sq

2. predictions PM,✓-k (Y | X = xi ) are made for samples i 2 Sk .

Very important:
cross-validation is only valid if all supervised steps performed in
building a classification model are conducted separately in each
of the k-folds.

I’m looking at you, feature selection!

The crossval function in the R package bootstrap can do
k-fold cross-validation if you wrap the entire modeling procedure
in an R function.
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k-fold cross-validation

For application
to other data

Normalization
Variance

Filter

Feature
Selection

S
-1

Feature
Selection

S
-2

Feature
Selection

S
-k

Fit
Model (M,θ

-2
)

Fit
Model (M,θ

-k
)

... ...

Fit
Model (M,θ

-1
)

Test
S

1

Test
S

2

Test
S

k

...

Assess
Performance

Feature
Selection

S

Fit
Model (M,θ)

I Depending on details of modeling strategy M, unsupervised
normalization and variance filtration may be done outside CV

I CV assesses performance of modeling strategy M, not of the specific
parametrized model (M,✓).
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Overfitting II: Cross-validation

Returning to overfit example. . .
For i 2 {1, . . . , 100}, simulated data xi on pseudogenes
g 2 {1, . . . , 2500} from X ⇠ N (µ = 0,⌃ = I ).

Generated class labels yi from Y ⇠ Bern(p = 0.5) independently

of X.

Then selected top n 2 {10, 25, 50, 100} genes by t-test and fit
variety of classification models for Y using these genes:

Modeling Strategy AUC Accuracy Sensitivity Specificity PPV NPV

t-Test 10: Knn 0.476 0.47 0.589 0.318 0.524 0.378
t-Test 25: Knn 0.558 0.55 0.714 0.341 0.580 0.484
t-Test 50: Knn 0.286 0.41 0.571 0.205 0.478 0.273
t-Test 100: Knn 0.446 0.54 0.768 0.250 0.566 0.458

t-Test 10: Logistic 0.357 0.39 0.464 0.295 0.456 0.302
t-Test 25: Logistic 0.554 0.54 0.643 0.409 0.581 0.474
t-Test 50: Logistic 0.362 0.46 0.571 0.318 0.516 0.368
t-Test 100: Logistic 0.418 0.53 0.768 0.227 0.558 0.435

t-Test 10: Svm 0.376 0.42 0.518 0.295 0.483 0.325
t-Test 25: Svm 0.484 0.50 0.607 0.364 0.548 0.421
t-Test 50: Svm 0.347 0.40 0.482 0.295 0.466 0.310
t-Test 100: Svm 0.464 0.51 0.589 0.409 0.559 0.439
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Normalization

Basic measurement unit of RNA-seq is count of reads mapped to
a given marker (gene, exon, etc.).

Besides biological expression levels, many technical factors
influence these counts as well, e.g.:

1. differences in library size (sequencing depth)
2. length of gene

Simplest normalization schemes account for these influences by
1. dividing the total library size (and multiplying by 106) to

obtain CPM or
2. further dividing by gene length (and multiplying by 103) to

obtain RPKM
(Normalization for gene length may not be necessary in studies
which do not attempt to compare expression levels between
different genes.)
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Alternative normalization methods

Some studies have found that RPKM normalization may not
appropriately control for association between gene length and
read counts (Dillies et al. (2013)).

Further, both CPM and RPKM may overweight influence of few
very highly expressed genes which may actually be differentially
expressed across samples.

Simple alternatives are to use upper quartile- or median-read
count as sample normalization factor instead of sum; Dillies et al.

(2013) found these options preferable.

More complex normalization methods offered by the R packages
DESeq and edgeR; may offer better performance in some
circumstances.
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Feature selection

Generally assumed that expression patterns of most genes are
either:

1. uninformative or
2. contain only information redundant with a small number of

maximally useful markers
with respect to a particular classification task.

Feature selection attempts to identify optimal set of markers
for inclusion in classifier.

Not all modeling techniques absolutely require upfront feature
selection but the resulting simplification:

1. reduces computational workload,
2. can help to avoid overfitting (though feature selection can

itself be susceptible to overfitting), and
3. facilitates model platform migration.
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Taxonomy (adapted from Saeys et al. (2007))

Filter Selection done before and independently of
classifier construction. Can be univariate or
multivariate.

Wrapper Embed classifier construction within feature
selection process. Heuristic search methods
compare models, favor adding or removing features
based on optimization of some specified metric on
resulting classifiers.

Embedded Feature selection is inherently built into some
classifier construction methods.
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Taxonomy (adapted from Saeys et al. (2007))

Category Advantages Disadvantages Examples

Filter

Univariate

Fast - feature dependencies t-test, ANOVA
Scalable - interaction w/classifier Wilcox test
Independent of classifier Rank Product

Multivariate

+ feature dependencies Slower CFS
Independent of classifier Less Scalable Markov Blanket Filter
Intermediate complexity - interaction w/classifier

Wrapper

Deterministic

Simple Risk of over-fitting Forward Selection
+ interaction w/classifier Greedy (local optima) Backward Elimination
+ feature dependencies Classifier dependent selec-

tion
Plus q minus r

Randomized

Less prone to local optima High risk over-fitting Simulated Annealing
+ interaction w/classifier Computationally intensive Randomized Hill Climb-

ing
+ feature dependencies Classifier dependent selec-

tion
Genetic Algorithms

Embedded
+ interaction w/classifier No modularity Decision trees
+ feature dependencies Restrict algorithms Weighted Naive Bayes
Intermediate complexity LASSO regression
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False Discovery Rate (FDR)

Tree diagram to illustrate the false discovery rate in significance tests. This
example considers 1000 tests, in which the prevalence of real effects is 10%.
The lower limb shows that with the conventional significance level, p=0.05,
there will be 45 false positives. The upper limb shows that there will be 80
true positive tests. The false discovery rate is therefore 45/(45+80)=36%, far
bigger than 5%.

Taken from Colquhoun (2014).
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False Discovery Rate (FDR)

When statistical hypothesis testing employed for feature selection,
multiple comparisons problem must be confronted:

With p markers, even if very few truly differentially expressed,
⇡ ↵p false positive results will be obtained.

Many methods proposed to mitigate; most popular is false
discovery rate (FDR) method of Benjamini & Hochberg
(1995) (implemented in R by function p.adjust with argument
method="fdr").

Idea: control the fraction of reported positive (significant) results
which are really false positives.

Multiple comparisons should be taken into account when
powering a study as well. E.g., if a particular FDR is targeted,
should estimate what unadjusted single test significance level ↵
might yield that FDR.
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Variance filtration

Markers with weak effect sizes but apparently low within-group
variance tend to make up large number of false positives.

Small between-group effect + low within-group variance =)
low overall variance. Overall variance V[Xg ] of a marker is
independent of the class Y .

For many statistical hypothesis tests, such independent filtering
steps can be performed prior to testing to reduce comparisons
which must be accounted for by FDR (Bourgon et al. (2010)).

Such Y -independent filtering steps are only forms of feature
selection that may be applied outside cross-validation (Hastie
et al. (2009))

. . . though should always take care that “independent filtering”
step really is independent, as discussed in Bourgon et al. (2010).
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Variance filtration

Overall variance (or equivalently, overall standard deviation) filtering example,
using the ALL data, comparing 3 BCR/ABL and 3 control subjects. (A)
Volcano plot contrasting log-fold change with p-value, as obtained from a
standard t-test. The impact of filtering is shown: overall variance filtering is
equivalent to requiring a minimum fold change—where the bound increases as
the p-value decreases.

Taken from Bourgon et al. (2010).
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Empirical Bayes

Multiple comparisons aren’t all bad news for statistical inference.

When many similar variables simultaneously measured, possible
to “borrow information” across variables.

Empirical Bayes methods (Efron (2010)) mix frequentist and
Bayesian ideas to empirically estimate something like a Bayesian
prior for distributional parameters of individual genes.

Can be derived as approximations to fully Bayesian hierarchical
models.

The R package limma (Ritchie et al. (2015)) uses these ideas to
identify differentially expressed genes with fewer false positives;

achieved largely through shrinking individual gene variance
estimates towards a pooled variance estimate (so may not be
compatible with variance filtration).
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Empirical Bayesball

Observed Values batting averages from first 45 at-bats

EB Estimates shrink Observed Values towards mean

Final values final batting average for player

Observed Mean use your imagination.

Taken from Casella (1985).



Listening to
what genes
are saying

Statistical
learning from

gene
expression

data

Introduction

Normalization

Feature
selection

Classification

knn

Linear
models

Naive Bayes

SVM

Other
methods

References

Supervised learning

Feature selection often identifies markers g for which the class
labels Y predict Xg through P(Xg | Y ).

Classification seeks to use feature data X = x to predict Y

through P(Y | X).

Supervised classification uses a training set

{(xi , yi ) | i 2 {1, ...,N}} to construct a classifier M,✓ which can
be used to make predictions PM,✓(Y = y | X = x).
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k-nearest-neighbors (knn)

Perhaps simplest approach to classification:

k-nearest neighbors
Given vector x of feature values (e.g., expression counts xg for
selected genes g) with k nearest training vectors

{xj | j 2 NNk},

with kxj � xk  kxi � xk if j 2 NNk and i /2 NNk :

P(Y = 1 | X = x) =
1

|NNk |
X

j2NNk

yj

As long as there is natural metric on feature space, this method
has a lot to recommend it in low-dimensional settings.

k-nearest-neighbors is implemented in R by the knn function
from the package class.
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knn and the curse of dimensionality

Volume of p-dimensional hypersphere of radius r is

Vp(r) =
⇡p/2

�
�p

2 + 1
�
r

p / r

p

For x to have many neighbors nearer than r , must be many
xi 2 Strain in volume Vp(r) centered at x.

If the dimensionality p is large and r is small, this is very unlikely.

So must use points far away to guess what’s going on at x.

Not surprisingly this doesn’t always work.
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Linear models

In the context of classification, “linear model” usually means

P(Y = 1 | X = x) = expit(�0 + � · x)

where expit : R ! (0, 1) defined by expit(u) = exp(u)
1+exp(u) is the

logistic, or inverse-logit, function.
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Linear models

In the context of classification, “linear model” usually means

P(Y = 1 | X = x) = expit(�0 + � · x)

where expit : R ! (0, 1) defined by expit(u) = exp(u)
1+exp(u) is the

logistic, or inverse-logit, function.

Two main classes of such linear classification models:
1. linear discriminant analysis (LDA) (marginal): adds

assumption P(X = x|Y = y) ⇠ N (µy ,⌃)

2. logistic regression (conditional): makes no explicit
distributional assumptions about X, instead maximizes
likelihood of conditional P(Y | X) over training set.
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Linear models in high-dimensional settings

While less flexible than knn, linear models can be made robust in
high-dimensional settings using regularization.

Unregularized linear regression uses maximum likelihood to select
coefficients �g ; fit by ordinary least-squares (OLS) estimator:

�̂OLS = arg min
�

X

i

(yi � � · xi )
2

Bayesian derivation of OLS uses uniform prior on �.

If instead Gaussian prior (L2 regression) imposed on �,
maximum a posteriori (MAP) estimator is (Park & Casella
(2008)):

�̂L2 = arg min
�

"
X

i

(yi � � · xi )
2 + �2

X

g
�2

g

#

where the regularization parameter �2 determined by variance of
the Gaussian prior.
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Lasso regression

Alternatively, use of Laplace prior for � yields MAP estimator
(Park & Casella (2008)):

�̂L1 = arg min
�

"
X

i

(yi � � · xi )
2 + �1

X

g
|�g |

#

where now �1 is determined by width of the Laplace prior.

As �1 is increased, progressively more �g set to zero, de-selecting
the corresponding features (Tibshirani (1996))— L1, or
LASSO, regression is an embedded feature selection method.

Both L1/LASSO and L2/ridge logistic regression are
implemented in the R package glmnet function glmnet using
argument family="binomial".
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Shrinkage and diagonal LDA

LDA can also be regularized:
Instead of using the maximum likelihood estimator for the
covariance matrix ⌃, off-diagonal entries ⌃gh are shrunk by a
regularization parameter towards 0 (R package sda).

In most extreme form, shrinkage LDA sets all ⌃gh = 0 (g 6= h).

Since ⌃ is now a diagonal matrix, this is referred to as diagonal
LDA or DLDA. DLDA has been been found to be particularly
useful for gene expression data (Dudoit et al. (2002)).

A nice implementation of DLDA can be found in the dlda

function in the R package sparsediscrim.
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Naive Bayes

“Naive Bayes” describes a family of classification methods sharing
a common assumption:

P(X = x | Y = y) =
Y

g
P(Xg = xg | Y = y)

which can be substituted into Bayes’ formula to yield:

P(Y = y | X = x) =

Q
g
P(Xg = xg | Y = y)

P
y 0

Q
g
P(Xg = xg | Y = y

0)

DLDA is actually a form of naive Bayes classification in which
the additional assumption of linearity is posed.



Listening to
what genes
are saying

Statistical
learning from

gene
expression

data

Introduction

Normalization

Feature
selection

Classification

knn

Linear
models

Naive Bayes

SVM

Other
methods

References

Naive Bayes

“Naive Bayes” describes a family of classification methods sharing
a common assumption:

P(X = x | Y = y) =
Y

g
P(Xg = xg | Y = y)

which can be substituted into Bayes’ formula to yield:

P(Y = y | X = x) =

Q
g
P(Xg = xg | Y = y)

P
y 0

Q
g
P(Xg = xg | Y = y

0)

DLDA is actually a form of naive Bayes classification in which
the additional assumption of linearity is posed.



Listening to
what genes
are saying

Statistical
learning from

gene
expression

data

Introduction

Normalization

Feature
selection

Classification

knn

Linear
models

Naive Bayes

SVM

Other
methods

References

Naive Bayes: does it work?

Taken from Hess et al. (2006).
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Naive Bayes: does it work?

The conditional independence assumption is basically never true,
but:

1. frequently not enough data to accurately assess true
inter-feature covariance, so that attempts to do so just lead
to overfitting, and

2. while this assumption tends to lead to overconfident
classifiers—probability scores very near 0 or 1 even when
wrong—it still often leads to accurate classifiers—most
calls aren’t wrong.

3. Naive Bayes methods work well when either:
I features truly are independent within each class or

I features are very tightly correlated (may actually be more
relevant in gene expression context) (Rish et al. (2001)).
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Bias-variance tradeoff

From Wikipedia (http://en.wikipedia.org/wiki/Bias–variance_tradeoff):

The bias–variance tradeoff (or dilemma) is the problem
of simultaneously minimizing two sources of error that
prevent supervised learning algorithms from
generalizing beyond their training set:

bias error from erroneous assumptions in the
learning algorithm. High bias can cause
an algorithm to miss the relevant
relations between features and target
outputs (underfitting).

variance error from sensitivity to small fluctuations
in the training set. High variance can
cause overfitting: modeling the random
noise in the training data, rather than
the intended outputs.
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Support vector machines (SVMs)

Taken from Hastie et al. (2009).
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Nonlinear SVMs

Can fit SVM in nonlinearly transformed feature space.

For certain transformations, so-called “kernel trick” can be used
to do this in very computationally efficient manner. Given a
particular transformation h, the kernel

k(x, x0) = hh(x), h(x0)i

is actually all that is needed to fit SVM.

Most popular h is rather involved transformation designed to
produce the radial basis kernel

k(x, x0) = exp
�
��kx � x0k2�

SVMs may be intuitively thought of as classifying a sample with
features x based on the (known) classes of similar training data
xi , where “similarity” is quantified by the kernel k(x, xi ).
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Other methods

I Quadratic discriminant analysis (QDA)
I Decision trees

I Random forests
I Boosted trees

I Neural networks
I Graphical models

I Undirected graphical models
I Directed acyclic graphs (Bayesian networks)
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