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Goals

Introduce NGS vocabulary

provide both high-level view and
Important consideration detalls

Focus on common, initial tasks
raw sequence preparation, alignment to reference
common bioinformatics tools & file formats

Understand required skills & resources
computational & storage resources
highlight best practices



Other NGS Resources at UT o

e CBRS short courses

3-4 hour workshops on a variety of topics
Intro & Intermediate Unix; Advanced Bash scripting
Intro & Intermediate Python; Visualization in R
Intro to RNA-seq, single cell analysis

e Genome Sequencing & Analysis Facility (GSAF)
Jessica Podnar, Director,

e Bioinformatics consultants
Dennis Wylie, Dhivya Arasappan, Benni Goetz, Anna
Provide no-cost consulting on experimental design (with GSAF)
BiolTeam wiki —

e Biomedical Research Computing Facility (BRCF)
provides local compute and managed storage resources


mailto:gsaf@utgsaf.org
https://wikis.utexas.edu/display/bioiteam/
https://wikis.utexas.edu/display/RCTFUsers
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Qutline

. History of sequencing technologies
. NGS terminology

. The FASTQ format and
Raw data QC & preparation

. Alignment to a reference



Part 1:
Overview of Sequencing
Technologies

e Sanger sequencing

e The human genome project

e High-throughput (“next gen”) sequencing
e lllumina short-read sequencing

e Long read sequencing




Ccore processes

fasig NGS Workflow
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Sanger sequencing

(1st generation)

0oL

e Developed by Frederick Sanger, 1977
o find sequence of one purified DNA molecular species
e Originally 4 sequencing reactions

o all with deoxynucleotides (dNTs, e.g. dATP), | N
DNA polymerase ol # o L . ¢
e each with different labeled chain-terminating ddNT on oo L( j
dideoxynucleotide lacking 3'-OH b
. ) | primer  E— |
e signal generated when ddNT incorporated T A——
Labeled terminator (ddNTP) N
e original signal from radiolabeling,

@
readout on PAGE gel
e Now done in 1 reaction w/fluorescent dyes

== by

Buﬂﬂ

TGATTCATC

+

Fredérick Sanger
1918 - 2013



Human Genome project | ::

Used Sanger sequencing to sequence
3.3 billion base pair human genome!

Massive effort
e > 20 institutions worldwide
e $2.7 hillion cost

Public effort started 1990

e UCSC key player, Jim Kent
e “chromosome walking” method

Private effort started 1998

e Celera Genomics, J. Craig Venter, Hamilton Smith
e “shotgun sequencing” method

1st draft published jointly in 2001



Chromosome walking

;- g k.
Cloned genomes
< Genome divided into large
segments of known order,
——
[ N e— ] j Ordered genome
[ e Rl ee— ] segments
—
Multiple genome portions are
sheared into variable sized
= segments
_ - — =~
‘;_ 4 e -
ﬁ; e = == Unordered sequenced
o = e
—
™ computational autc d
assembly
E E (1TH) (NI q " o
= mmmm | Resuiting overlapping
= <o === e EORGAINE SGMBIE L i
@) NN | pigher the coverage the better
| = — itz ] the quality of the sequencing.
= =3 =
—
Overlapping sequences
ATGTTCCGATTA TTTCATTCAGTAAMAGGAGGAAATATAA | segments combined to construct
\ the genome consensus.
Shotgun sequencing
= Y \

L

ATGTTCCGATTA

TTTCATTCAGTAAAAGGAGGAAATATAA

Cloned genomes

Multiple genomes are sheared
into variable sized segments

Unordered sequenced
segments

Computational automated
assembly

Resulting overlapping sequence
segments. (The higher the
coverage the better the quality
of the sequencing.

Overlapping sequence segments

—

combined to construct the
genome consensus, /

Both

Larger DNA fragments sheared
into variable-sized segments

e 2-50 kilobase (kb)

e Sanger sequenced

Fragments assembled
computationally using partial
overlaps

e contiguous bases (contigs)

placed onto larger scaffolds

High coverage (bases over a
given position) required for
reduced error consensus

Chromosome walking

15t created large sub-clones
with known order on genome

Shotgun sequencing

Lack of large sub-clones made
computational assembly more

challenging
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Next Generation” sequencing | :::
o0
Massively parallel Sanger NGS
e simultaneously sequence “library” of @ DNA fragmentation b DNA fragmentation
millions of different DNA fragments = = &= & | & = & &=
PCR colony clusters generated ~ = = == = = =
o individual template DNA fragments e coning endemp eation (Sequencing adapten
titrated onto a flowcell to achieve - =, e
inter-fragment separation s = -
o PCR “bridge amplification” creates = Single type of molecule | = Many different molecules
: : Cycle sequencin Generation of polony arra
clusters of identical molecules 5. GACTAGATACGAGCOTGA -6 (emplate)|  polony = POR colony cluster
5-.. CTGAT ,._CTGATC’E?D (primer) T ——
Sequencing by synthesis | - SremoTa
. CTGATCTAT
o fluorescently-labeled dNTs added -_::g;ggg;i;gc%
o incorporation generates persistent wps T ememadte 2

: 2
5|gnal (after WaSh) Labeled ddNTPs .. .CTGATCTATGCTCG

o flowcell image captured after each cycle Electrophorsesis Cyclic array sequencing
. . (1 read/capillary) (>10° reads/array)
e images computationally converted Cycle 1 Cycle 2 Cycle 3

to base calls Y R
: : . : : Ty o 09
e including quality (confidence) measure | —7 (] (c) © 0
° reSUItS in 30_300 base ureadsu —ac What is base 17 What is base 27 What is base 37

e vs multi-Kilobase with Sanger Shendure et al, Nature Biotechnology. 2008.


http://dx.doi.org/10.1038/nbt1486

“Next Generation” sequencing | ::::

(2"d generation) oo

e Pro’s: e Con’s:

e much faster! e data deluge!
e much lower cost! e storage requirements!
e both deeper and wider coverage! e analysis lags!

SRA database growth

Cost per Genome 1892 109, 022, 541,074 total bases
F,005,038, 157 647,410 open accegE hages
1008 i 1016 baS es
=g | (10 PetaBase)
u / & growing
m) National Hurhan Genome 1 BM%,, I S RA = Seq u en C e Read A r C h |Ve
T—— DR, 00 (NCBI public sequence database)
genome.gov/sequencingcosts O g -

20012002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 e e , s ma s s e smis




lHlumina workflow °e

e lllumina dominant for “short” (<300 bp) reads

WWNGS market by competitor (2007-15F)*
Billions of dollars

§2.50 - o Other

u Complete Genomics

u Helicos

$2.00 | mPacBio

= Roche 1.75

Life Technologies
1.50
$1.50 | ®lllumina -

...........

I |

$1.00 - o.w!l
1153

0.59 :o.z:

0.2

50.50 1 0.37 0.1 : :

0.15 N 0.5 °°H

= ﬁ 0.3 1 [

- 1 [

§ o

|

CAGR
(07-11EX11E-15F)

..........

12%

Typical lllumina RNA-seq workflow

experimental design library creation

8Cc9ALS 10sALS 8 Controls Isolate RNA

Generate cDNA
Frontal‘/\A />>lntal /\
Cerebell
e erebellum i Cerebellum l

H

H =

Create sequencing library by
fragmenting, size selection and
adding adaptors

Generate ~80 million paired

Run llumina HiSe
short reads per sample q

2000 sequencer
(and PCR amplification!)

library preparation



lllumina sequencing e

1. Library preparation
2. Cluster generation via bridge amplification
3. Sequencing by synthesis 2 R
inio & bridge-ike
4. Image capture e thepe.
5. Convert to base calls preer
Fiorw call ?
Short lllumina video ' )
(https://tinyurl.com/hvnmwijb) Compementany (Reverse]
grand s made
Clonal copies of boh
forwand and reverss sirand
e Note 8 clustes :
e 2 PCR amplifications performed Reverse Strand Forward Svand

during library preparation
during cluster generation
® amplification a|WayS intrOduceS biaS! https://en.wikipedia.org/wiki/lllumina_dye seguencing



https://www.youtube.com/watch?annotation_id=annotation_1533942809&feature=iv&src_vid=HMyCqWhwB8E&v=fCd6B5HRaZ8
https://www.youtube.com/watch?annotation_id=annotation_1533942809&feature=iv&src_vid=HMyCqWhwB8E&v=fCd6B5HRaZ8
https://www.youtube.com/watch?annotation_id=annotation_1533942809&feature=iv&src_vid=HMyCqWhwB8E&v=fCd6B5HRaZ8
https://www.youtube.com/watch?annotation_id=annotation_1533942809&feature=iv&src_vid=HMyCqWhwB8E&v=fCd6B5HRaZ8
https://tinyurl.com/hvnmwjb
https://en.wikipedia.org/wiki/Illumina_dye_sequencing

a ko w0 npoE

lllumina sequencing e

Library preparation

Cluster generation via bridge amplification
Sequencing by synthesis

Image capture

Convert to base calls

0000000
9900000000000

‘_-_-_.._..-.._--_--

http://www.cegat.de/



http://www.cegat.de/

Multiplexing 2o

lllumina sequencers have one or more flowcell “lanes”,
each of which can generate millions of reads

e ~20M reads/lane for MiSeq, ~10G reads/lane for NovaSeq
When less than a full flowcell lane is needed, multiple samples with different
barcodes (a.k.a. indexes) can be run on the same lane

e 6-8bplibrary barcode attached to DNA library fragments

e data from sequencer must be demultiplexed
to determine which reads belong to which library

B Genomic DNA
Reads

Tag-sample 1
Tag-sample 2
’ \ — —
_ — / | ——
\ - /
S 8 \
e — \
N /

gDNA Tagging Pooled parallel De-multiplexing Alignment Sequence
sequencing


https://doi.org/10.2147/BLCTT.S51503

. 000
0000
lllumina sequencer models T
(UT’s sequencing core facility, GSAF) o
LplEe ik Read lengths Recommended applications
per lane
2
Nova (both get 1-20G 50, 100, 150, 250
Seq same DNA)
e WGS (Whole Genome Sequencing),
HiSeq 8 240 M 50, 75, 150 WXS (Whole Exome Sequencing),
4000 RNA-seq,
GBS (Genotyping by Sequencing)
S targeted sequencing
riSeq 3 200 M 36, 50, 75, 100, 125
2500 (150, 250 rapid run)
4
NextSeq  (all 4 get 330 M 75, 150
same DNA)
Amplicons, metagenomics,
. 12-22M v2: 25, 36, 150, 250 )
MiSeq 1 (v2 vs v3 chemistry) v3: 75, 300 BHES W7 077 GO

RNA-seq for small transcriptomes

Instrument cost: $125 K — $1+ M; Run cost: $1 K — $25 K



Long read sequencing g2

e Short read technology limitations
e 30 - 300 base reads (150 typical)
o PCR amplification bias
e short reads are difficult to assemble
e.g. too short to span a long repeat region

o difficult to detect large structural variations
like inversions

3000

2500

@ PACBIO

2000
of data in reads: >20 kb

Reads

1500

e Newer “single molecule” sequencing
e sequences single molecules, not clusters

e allows for much longer reads — multi-Kb!
no signal wash-out due to lack of

synchronization among cluster molecules “| ‘||||||I||““|
|

e Dbut: weaker signal leads to high error rate
~10+% vs <1% for Illlumina T readtengn -
fewer reads are generated (~100 K)

e one amplification usually still required (during library prep)

1000

Top 5% of reads: >40 kb

g

Longestreads: >60 kb

..............
--------

0



o000
o000
. o000
Long read sequencing
o0
O
e Oxford Nanopore ION technology systems
o
o DNA “spaghetti’s” through tiny protein pores
e Addition of different bases produces different pH changes
measured as different changes in electrical conductivity
e MinlON is hand-held; starter kit costs ~$1,000 — including reagents!
inexpensive, but high error rates (~10%)
5 /¢ @
N
T
[
Sensing layer /
Sensor plate
B — — P — N /,' |
| | |- | e s
T A C G Bulk Drain SOUICE === To column


https://nanoporetech.com/

Long read sequencing e

e PacBio SMRT system @ SACBIO"

http://www.pach.com/smrt-science/smrt-sequencing/
Sequencing by synthesis in Zero-Mode Waveguide (ZMW) wells

DNA is circularized then repeatedly sequenced to achieve “consensus”
reduces error rate (~1-2%), but equipment quite expensive

Also have a PCR-free protocol (limited applications)

Polymerase Read:; ===

~ 0\ ,

L
Subreads: |

Circular Consensus Sequence (CCS) Read:

“
Emission

lllumination


http://www.pacb.com/smrt-science/smrt-sequencing/
http://www.pacb.com/smrt-science/smrt-sequencing/
http://www.pacb.com/smrt-science/smrt-sequencing/
http://www.pacb.com/smrt-science/smrt-sequencing/
http://www.pacb.com/smrt-science/smrt-sequencing/
http://www.pacb.com/wp-content/uploads/Ekholm-ASHG-2016-Enrichment-of-unamplified-DNA-and-long-read-SMRT-Sequencing-to-unlock-repeat-expansion-disorders.pdf
http://www.pacb.com/wp-content/uploads/Ekholm-ASHG-2016-Enrichment-of-unamplified-DNA-and-long-read-SMRT-Sequencing-to-unlock-repeat-expansion-disorders.pdf
http://www.pacb.com/wp-content/uploads/Ekholm-ASHG-2016-Enrichment-of-unamplified-DNA-and-long-read-SMRT-Sequencing-to-unlock-repeat-expansion-disorders.pdf

Part 2:
NGS Terminology

Experiment types & library complexity
Sequencing terminology

Sequence duplication issues
Molecular barcoding approaches




Ccore processes

fasig NGS Workflow
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Library Complexity :

Library complexity (diversity)
IS a measure of the number of
distinct molecular species in the library.

Many different molecules - high complexity
Few different molecules - low complexity

The number of different molecules in a library
depends on enrichment performed during
library construction.



Popular Experiment Types oss

Whole Genome sequencing (WGS)

e main application: genome assembly

e library: all genomic DNA

e complexity: high (fragments must cover the entire genome)

Exome sequencing (WXS)

e main application: polymorphism/SNP detection; genotyping

e library: DNA from eukaryotic exon regions (uses special kits)

e complexity: high/med (only ~5% of eukaryotic genome is in exons)

RNA-seq

e main application: differential gene expression between 2 or more conditions

e library: extracted RNA converted to cDNA

e complexity: med/high (only a subset of genes are expressed in any given tissue)

Amplicon panels (targeted sequencing)

e main applications: genetic screening panels; metagenomics (e.g. 16S rRNA); mutagenesis
e library: DNA from a set of PCR-amplified regions using custom primers

e complexity: very low (only 1 to a few thousand different library molecules)



Whole

genome (wGs)

Bisulfite

sequencing

RAD-seq,
ddRAD

Exome (wxs)

ATAC-seq

RNA-seq,
Tag-seq

Transposon
Seq (Tn-seq)

ChlP-seq

GRO-seq

RIP-seq

miRNA-seq
Amplicons

« extract genomic DNA & fragment

* bisulfite treatment converts C - U
but not 5meC

* restriction-enzyme digest DNA &
fragment

« capture DNA from exons only
(manufacturer kits)

* high-activity transposase cuts DNA
& ligates adapters

« extract RNA & fragment

 convert to cDNA (all fragments or just
3’ poly-A’d ends with Tag-seq)

« create library of transposon-
mutated genomic DNA
« amplify mutants via Tn-PCR

» cross-link proteins to DNA
* pull-down proteins of interest w/
specific antibody, reverse cross-links

* isolate actively-transcribed RNA
* like ChIP-seq, but with RNA

* isolate 15-25bp RNA band
« amplify 1-1000+ genes/regions

» Genome assembly
« Variant detection, genotyping

* DNA Methylation profiling (CpG maotifs)

« Variant detection (SNPs)
 Population genetics, QTL mapping

« Variant detection, genotyping

* Profile nucleosome-free regions (“open
chromatin”)

« Differential gene or isoform expression
* Transcriptome assembly (RNA-seq only)

» Characterize genotype/phenotype
relationships with high sensitivity

» Genome-wide binding profiles of
transcription factors, epigenetic marks &
other proteins

» Characterize transcriptional dynamics
» Characterize protein-bound RNAs
* miRNA profiling

* genotyping, metagenomics, mutagenesis

high

high

high

high-

medium

medium-
high

medium,
medium-low
for Tag-seq

medium

medium
(but
variable)

medium-low

low-medium

low

low



Library complexity is primarily
a function of experiment type 2

higher
_ complexity
Less enrichment for A
specific sequences
genomic
bisulfite-seq

exon capture
RNA-seq
ChlIP-seq

amplicons
More enrichment for
specific sequences

lower
complexity

A\ 4

Higher diversity of library molecules
Lower sequence duplication expected
More sequencing depth required

...aswell as...
* genome size & sequencing depth
e library construction skill & luck!

Lower diversity of library molecules
Higher sequence duplication expected
Less sequencing depth required



Read types eo

Rl —— Rl ——

«— R2

independent reads _ _
two inwardly oriented

reads separated by ~200 nt

*'*‘\_,.

== 77N
A s
u
alternative to long reads

rarely used now (expensive)

two outwardly oriented reads separated by ~3000 nt




Read sequence terminology |::::

Fragment library (input DNA sample)

Library prep

Double-stranded or Y- adaptors added

——— Sequencing library
l DNA sequencing

N Barcode (6-12 bases) — so many

P samples can be run in one lane.
e e Data is demultiplexed.
Primers Reads (30 — 300 bases)

e Adapter areas include primers, barcode
e sequencing facility will have more information


https://wikis.utexas.edu/pages/viewpage.action?pageId=28165137

Reads and Fragments

With paired-end (PE) sequencing, keep in mind the

distinction between

e the library fragment from your library that was sequenced
also called inserts

e the sequence reads (R1ls & R2s) you receive
also called tags

e an R1 and its associated R2 form a read pair
a readout of part (or all) of the fragment molecule

There is often confusion of terminology in this area!

e Be sure to request depth in read pairs for paired-end sequencing

adapter library fragment (insert) adapter
Y I
R1 reads R2 reads

—




Library fragment distribution | 2::

e Fixed size in your sequencing library:
o the adapter region (including all barcodes)
e the read length (e.g. 50, 100, 150)
e But the insert fragments are of variable length
e due to random shearing during sonication
e bioanalyzer gives an idea of your library’s fragment distribution

adapter library fragment (insert) adapter

I e I
R1 read é _ R2 read



(XY
X
3 A o000
Single end vs Paired end
o0
o
e single end (SE) reads are less expensive
e but SE reads provide less information
e paired end (PE) reads can be mapped more reliably
e especially against lower complexity genomic regions
an unmapped read can be “rescued” if its mate maps well
o they provide more bases around a locus i sl

R1 read R2 read

e.g. for analysis of polymorphisms .- >
e actual fragment sizes can be easily determined

from the alignment records for each dual-mapping “proper pair”
e also help distinguish the true complexity of a library

by clarifying which fragments are duplicates (vs read duplicates)
e but PE reads are more expensive — and more data

more storage space and processing time required

e General guidelines
e use PE for high location accuracy and/or base-level sensitivity
e use SE for lower-complexity, higher duplication experiments



Sequencing depth

e How much sequencing depth is needed?
No single answer! Consult your sequencing facility.

e Depends on:

genome size
prokaryotes — up to a few Megabases (E. coli: 5 Mbase)
lower eukaryotes — 10+ Megabases (yeast: 12 Mbase; worm 100 Mbase)
higher eukaryotes — Gigabases (chicken: 1 Gbase; human: 3 Gbase)
theoretical library complexity / library fragment enrichment
genomic re-sequencing vs amplicon sequencing
total RNA-seq vs 3’ Tag-seq
ChlIP-seq vs RIP-seq
desired sensitivity
e.g. looking for rare mutations



Sequencing depth required is a °co:

function of experiment type & genome size | ¢

higher
. complexity
Less enrichment for A
specific sequences Higher diversity of library molecules
genomic Lower sequence duplication expected
More sequencing depth required
bisulfite-seq
exon capture ... and more depth is required
for larger genomes
RNA-seq
ChlIP-seq
amplicons L(_)wer diversity of Iibrqry molecules
M ich {f Higher sequence duplication expected
ore enfichment tor A 4 Less sequencing depth required
specific sequences
lower

complexity



Sequence Duplication e

The set of sequences you receive can contain exact duplicates

Duplication can arise from:
1. sequencing of species enriched in your library (biological — good!)
each read comes from a different DNA molecule (cluster)

2. sequencing of artifacts (technical — bad!)

differentially amplified PCR species (PCR duplicates)
recall that 2 PCR amplifications are performed with Illumina sequencing

optical duplicates, when two lllumina flowcell clusters overlap
e cannot tell which using “standard” sequencing methods!

Standard best practice is to “mark duplicates” during initial processing

e then decide what to do with them later...
e.g. retain (use all), remove (use only non-duplicates), dose (use some)

Different experiment types have different expected duplication
e whole genome/exome - high complexity & low duplication
e amplicon sequencing = low complexity & high duplication



Expected sequence duplication is ece

primarily a function of experiment type

higher
_ complexity
Less enrichment for A
specific sequences _
genomic
bisulfite-seq

exon capture

RNA-seq
ChlIP-seq

amplicons

More enrichment for
specific sequences

complexity

A 4
lower

Higher diversity of library molecules
Lower sequence duplication expected
More sequencing depth required

...aswell as...
* genome size & sequencing depth
e library construction skill & luck!

Lower diversity of library molecules
Higher sequence duplication expected
Less sequencing depth required



Read vs Fragment duplication

e Consider the 4 fragments below
e 4 R1reads (pink), 4 R2 reads (blue)
e Duplication when only 1 end considered
e Al, B1, C1 have identical sequences, D1 different

2 unique + 2 duplicates = 50% duplication rate

o B2, C2, D2 have identical sequences, A2 different

2 unique + 2 duplicates = 50% duplication rate

e Duplication when both ends considered

o fragments B and C are duplicates (same external sequences)
3 unique + 1 duplicate = 25% duplication rate

Al
Bl
C1l
D1

N\ %

B2
C2
D2




Molecular Barcoding eoet

e Resolves ambiguity between biological and technical
(PCR amplification) duplicates
e adds secondary internal barcodes to pre-PCR molecules
a.k.a. UMIs (Unique Molecular Indexes)
e combination of barcodes + insert sequence provides accurate quantification

e Dbut requires specialized library prep & computational post-processing
e.g. 3’ Tag-seq tag de-duplication; scRNA-seq UMI de-duplication

actual Original library naive Amplified library barcode-
aware
count count
| molecule A-1 [ ] molecule A-1 gm count
L molecule A-1 I
A:2 A:3 A2
| molecule A-2 | B molecule A-2 N
B:1 N molecule B [ ] B:3 I molecule B I 5.1
] molecule B ]
| molecule B ]
A/B A/B A/B

2/1 1/1 2/1



Single Cell sequencing e

e Standard sequencing library starts with millions of cells
will be in different states unless synchronized
a heterogeneous “ensemble” with (possibly) high cell-to-cell variability

e Single cell sequencing technologies aim to capture this variability

examples:
cells in different layers/regions of somatic tissue (identify novel cell subtypes)
cells in different areas of a tumor (identify “founder” mutations)

essentially a very sophisticated library preparation technique

e Typical protocol (RNA-seq)
isolate a few thousand cells (varying methods, e.g. FACs sorting, cryostat sectioning)

the single-cell platform partitions each cell into an emulsion droplet
e.g. 10x Genomics ( )

a different barcode (UMI) is added to the RNA in each cell
resulting library submitted for standard lllumina short-read sequencing
custom downstream analysis links results to their cell (barcode) of origin


https://www.10xgenomics.com/solutions/single-cell/
https://www.10xgenomics.com/solutions/single-cell/
https://www.10xgenomics.com/solutions/single-cell/

000
0000
. ™ 0006 O
10x Genomics Chromium
0000
X X )
Next GEM technology LY
o Every Chromiurm solution starts with a high-diversity o After barcoding, all fragments from the same cell or
pool of Gel Beads, each coated with a unique nucleus share a commen 10x Barcode, Barcoded
oligonuclectide barcode sequence, and functionalized fragments for hundreds to tens of thousands of cells are
sequences fo capfure molecules of interest. pooled for downstraam reacfions to create short-read B
. o sequencer compatible libraries. AGEMisa
o within the Chromium instrument, barcoded Gel Beads “Gel Bead-in-emulsion”
are mixed with cells or nuclel, enzymes, and partitioning o After sequencing, turnkey bioinformatics tools use dmplef'fhﬂ*encﬂpsulﬂjes'
oil to form tens of thousands of single cell emulsion the identifying barcodes fo map sequencing reads back :::2.’:::;:;:‘:;:’;::::""
droplets called "GEMs® (Gel Bead-in-emulsion). to their single cell or nucleus of arigin.
o Each GEM acts as an individual reaction droplet in :Zr;e::s::: ﬁufﬁ:;'g';ié':fﬁf"‘
partitioned within a single droplet.

which the Gel Beads are dissolved and moleculas of
intarast from each cell are captured and barcoded.

Single cell GEMs

Barcode rermove ol

Sequencing

[ 5 ready
librarias
: gl

: N :

singlacall 10xbarcoded | 10x barcoded
GEMs  DMNAfragments | DNA fragments

enoenRe Ve

Analyze

https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_BR025 Chromium-Brochure Letter Digital.pdf



https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_BR025_Chromium-Brochure_Letter_Digital.pdf
https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_BR025_Chromium-Brochure_Letter_Digital.pdf
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https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_BR025_Chromium-Brochure_Letter_Digital.pdf
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https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_BR025_Chromium-Brochure_Letter_Digital.pdf

Some barcode (index) types | ::

e Library barcode
e multiple barcoded samples can be pooled on one sequencer lane

e Index is the same for all fragments in a library
~100 available (part of standard library prep kits)

e Molecular barcodes (Unique Molecular Index, UMI)
e added to achieve accurate fragment quantification (e.g. 3’ Tag-seq)
addresses ambiguity between biological and technical sequence duplication

o different, small barcodes (or pairs) attached to library fragments
before PCR amplification
e available diversity depends on barcode size and number, e.g.:

4 well-separated bases - ~80; 2 x 4 well-separated bases - ~700;
2 x 8 well-separated bases - ~500,000

finding well-separated, sequencing-compatible barcodes is not trivial!

e Single cell molecular barcode

e UMI attached to all cDNA molecules in each single cell
number of barcodes needed depends on # of single cells desired



Part 3:
The FASTQ format,
Data QC & preparation

e FASTA and FASTQ formats
e QC of raw sequences with FastQC tool
e Dealing with adapters
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FASTQ files E

e Nearly all sequencing data delivered as FASTQ files

FASTQ = FASTA sequences + Quality scores

o file names have .fastqg or .fg extensions

usually compressed to save space
(gzip’d, with .gz file extension)

best practice: leave them that way!
3x to 6x space saving
most tools handle gzip’d FASTQ

e Paired-end sequencing data comes in 2 FASTQs

one each for R1 and R2 reads, same number of rows
Sample MyTubelD L008 R1.fastq.gz
Sample MyTubelD L008 R2.fastq.gz

order of reads is identical
aligners rely on this “name ordering” for paired-end alignment



FASTQ format °

e Text format for storing sequence and quality data

e 4lines per sequence.
@read name (plus extra information after a space)

called base sequence (ACGTN)

always 5’ to 3’; usually excludes 5" adapter
+

base quality scores encoded as text characters

e FASTQ representation of a single, 50 base R2 sequence

(@HWI—ST1097 :97 :DOWWOACXX:4:1101:2007:2085 2:N:0:
ATTCTCCAAGATTTGGCAAATGATGAGTACAATTATATGCCCCAATTTACA

+
?@@?DD; ?; FF?HHBB+ : ABECGHDHDCF4?FGIGACFDFH,;, FHEIIIB9?

&



http://en.wikipedia.org/wiki/FASTQ_format

FASTQ read names o

e lllumina FASTQ read names encode information about the
source cluster

e unique identifier (“fragment name”) begins with @, then:
seguencing machine name + flowcell identifier
lane number
flowcell coordinates
e a space separates the name from extra read information:
end number (1 for R1, 2 for R2)
two quality fields (N = Not QC failed)
barcode sequence
e RI1, R2reads have the same fragment name
this is how the reads are linked to model the original fragment molecule

@HWI-ST1097:97 :DOWWOACXX:4:1101:2007:2085 1:N:0:ACTTGA
@HWI-ST1097:97 :DOWWOACXX:4:1101:2007:2085 2:N:0:ACTTGA




FASTQ quality scores 05°

e Base gualities expressed as Phred scores

e Phred scores are log scaled higher = better
versus probability [0,1] P-value, where lower = better

e Quality: 20 = 1.0e? = 1/100 errors; 30 = 1.0e = 1/1000 errors
Probability of Error = 107 %/10

e Integer Phred score converted to Ascii character (add 33)

Quality character !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJ
ASCII Value 33 43 53 63 73
Base Quality (Q) 0 10 20 30 40

[ ?@@?DD; ?; FF?HHBB+ : ABECGHDHDCF4?FGIGACFDFH; FHEIIIB9? ]

In older Illlumina/Solexa FASTQ files, ASCII offsets may differ
modern Sanger format shown above
see for others


https://www.asciitable.com/
http://en.wikipedia.org/wiki/FASTQ_format

Multiple lanes e

e One submitted sample may be delivered as multiple FASTQ files
Lanel: Sample_MyTubelD_L001 R1.fastq.gz, Sample _MyTubelD L001 RZ2.fastq.gz
Lane2: Sample_MyTubelD_L002_R1.fastq.gz, Sample_MyTubelD L002_RZ2.fastq.gz

e NovaSeq always runs samples on both lanes; NextSeq on all 4 lanes
e sometimes the sequencing facility splits your sample across lanes

e Your sample may be re-run to “top off’ requested read depth

e Dbe careful with the file names!
if run in the same lane, the FASTQ file names will be identical
1strun: Sample _MyTubelD_ L003 R1l.fastq.gz
2"d run : Sample_MyTubelD L003 R1.fastg.gz

e Best practice
o keep original data in separate directories by date & project

e process data from multiple lanes separately for as long as possible
e.g. through FASTQ quality assurance
allows detection of lane-specific artifacts or anomalies



Raw sequence quality control | ::::

Critical step! Garbage in > Garbage out

e general sequence quality metrics
base quality distributions
sequence duplication rate
e trim 3’ adapter sequences?
important for RNA-seq
e trim 3’ bases with poor quality?
important for de novo assembly
e other contaminants?
biological — rRNA in RNA-seq
technical — samples sequenced w/other barcodes

Know your data
e sequencing center pre-processing

5’ adapter removed? QC-failed reads filtered?
e PE reads? relative orientations? molecular barcodes present?

e technology specific issues?
e.g. bisulfite sequencing should produce C->T transitions




3’ Adapter contamination o

A. reads short compared to fragment size (no contamination)

~200 base library fragment

adapter adapter

5’
50 base R1 read ==

3!

31

51

= 50 base R2 read

B. Reads long compared to library fragment (3’ adapter contamination)

~100 base library fragment

The presence of the 3’ adapter sequence in the read can cause
problems during alignment, because it does not match the genome.



FastQC ::

Quality Assurance tool for FASTQ sequences

Can run as interactive tool or command line

Input:
o FASTQ file(s)
e run on both R1, R2 files

Output:

o directory with html & text reports
fastgc_report.html
fastgc_data.txt



Most useful FastQC reports

1. Per-base sequence quality Report

based on all sequences
Should | trim low quality bases?

2. Seqguence duplication levels Report

estimate based on 15t 100,000 sequences, trimmed to 50bp

How complex is my library?

3. Overrepresented sequences Report
based on 15t 100,000 sequences, trimmed to 75bp

Do | need to remove adapter sequences?



FastQC resources

FastQC website:

http://www.bioinformatics.babraham.ac.uk

FastQC report documentation:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/

Good lllumina dataset:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good sequence short fastqc/fastgc report.html

Bad lllumina dataset:

http://www.bioinformatics.babraham.ac.uk/projects/fastgc/bad sequence fastgc/fastqc report.html

Real Yeast ChlP-seq dataset:

http://web.corral.tacc.utexas.edu/BiolTeam/yeast stuff/Sample Yeast LO05 Rl.cat fastgc/fastqc report.html



http://www.bioinformatics.babraham.ac.uk/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3 Analysis Modules/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc/fastqc_report.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc/fastqc_report.html
http://web.corral.tacc.utexas.edu/BioITeam/yeast_stuff/Sample_Yeast_L005_R1.cat_fastqc/fastqc_report.html
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FastQC Sequence duplication report | ss2:
Yeast ChIP-seq

For every 100 unique sequences there are:

~12 sequences w/2 copies
~1-2 with 3 copies

1040

210]

a0

70

g0

a0

40

30

20

10

Ok — Some duplication expected due to IP enrichment

Sequence Duplication Level == 31.9%

%Duplicate relative to unigue

3 4

3 g
Sequence Duplication Level

2] 10+



Sequence duplication report cece

Yeast ChlP-exo

For every 100 unique sequences there are:

~35 sequences w/2 copies
~22 with 10+ copies

100

a0

a0

70

50

=0

40

20

20

10

Success! Protocol expected to have high duplication

Seguence Duplication Level == 72,33%

#Duplicate relative to unigue

Sequence Duplication Level

2] 10+



Expected sequence duplication is ece

primarily a function of experiment type

higher
_ complexity
Less enrichment for A
specific sequences _
genomic
bisulfite-seq

exon capture

RNA-seq

ChlIP-seq
ChlP-exo

amplicons
More enrichment for
specific sequences

complexity

A 4
lower

Higher diversity of library molecules
Lower sequence duplication expected
More sequencing depth required

...aswell as...
* genome size & sequencing depth
e library construction skill & luck!

Lower diversity of library molecules
Higher sequence duplication expected
Less sequencing depth required



Newer FastQC versions have a slightly different | eeee

100

a0

a0

70

&0

o

40

30

20

10

Sequence Duplication report

* Red “deduplicated” line as previously described
* Blue “total” line is percentage histogram

Percent of seqs remaining if deduplicated 46 663

% Deduplicated sequences
% Total sequences

3 4 5 & 7 = 4 =10 =50 100 =500
Sequence Duplication Lewel

> 1k >S5k =10k



FastQC Overrepresented |

sequences report

e FastQC knows lllumina adapter sequences

e Here ~9-10% of sequences contain adapters
calls for adapter removal or trimming

AGATCGGARGAGCACACGTCTGALCTCCAGTCACCTCAGRARTCTCGTATG

GATCGEARGAGCACACGTCTGAACTCCAGTCACCTCAGAATCTCGTATGE

CACACGTCTGAACTCCAGTCACCTCAGRAATCTCGTATGCCGTCTTCTGET

CAGATCGEALGAGCACACGTCTGARCTCCAGTCACCTCAGRRTCTCGTAT

EAGATCGEALGAGCACACGTCTGARCTCCAGTCACCTCAGRARTCTCGTAT

a0030

42855

3574

2518

1251

2.0136930697T7828

.2BT7559263388848596

.29849973398946483

.2103863542024236

.10448325887543942

TruSeqg Adapter, Index 1

(97% over 3T7bp)

TruSeqg Adapter, Index 1

(897% over 3T7bp)

ENA PCE Primer,
(100% owver 41bp)

Index 40

TruSeqg Adapter, Index 1

(97% over 3T7bp)

TruSeqg Adapter, Index 1

(97% over 3T7bp)



Overrepresented Sequences

e Here < 1% of sequences contain adapters

e trimming optional

ARCGRCTCTCGGCARCGGATATCTCGGCTCTCGCATCGATGRAAGAACGTA

AL TTCTAGAGCTARTACGTGCARCARRCCCCGACTTATGEARGEEACECR

AAAGEATTGGCT CTGAGGGCTGEGECT CEGEEGT CCCAGTTCCGARCCCET

TACCTGGITGAT CCTGCCAGTAGTCATATGCTTGTCTCARAGATTARMGCC

ATTGGCTCTGAGGGCTGGECTCGGGEGTCCCAGTTCCGARCCCGTCGGCET

TCTAGAGCTARTACGTGCARCALACCCCEACTTATGEALGEEACGCATTT

TAAACGACTCTCGGCARCGEATATCTCGGCTCTCGCAT CGATGARGRA AT

CTCGGATALCCGTAGTARTTCTAGRAGCTALTACGTGCARCRARALCCCCERAC

ATGGATCCGTARCTTCGGGARRAAGGATTGGCT CT GAGGGET GEGECTCGEE

A GACTCTCGGCALCGEATATCTCGGCTCTCGCAT CGAT GALGARMCE

CTAGAGCTAATACGTGCARCAAACCCCEACTTATGGARGEGACGCATTTA

AGAACTCCGCAGTTRAAGCGT GCTTGGGCGAGAGTAGTACTAGGATGLET G

ACTCGGATALCCGTAGTARTTCTAGRAGCTAATACGTGCARCARACCCCGR

ACGACTCTCGGCARCGEATATCTCGGCTCTCGCATCGATGARGALCGETAG

ACTTCGGGEAL R A GEATTGGCTCTGAGGGCT GGECTCEGGEETCCCAGTTC

AGATCGGAAGAGCACACGTCTGAACTCCAGTCACTGACCARATCTCGTATG

GAACCTTGGGATGGGTCGLGCCGET CCGCCTTTGGTGTGCATTGGTCGGET

102020

89437

89427

87604

65829

63212

6l582

29180

568982

24813

40019

-070TEB51 76890004

-8938T716073T7848865

-9386111154260659

-9194772066130483

-890893038028058273

-684454449541 6888

-8646354565289767

-68211435675010256

-58BOT3T20232235

-5T753082522040206

.4200328561646452

.4172409638200141

.4079416532284981

. 4034385935963508914

.35826072370047807

.3585947T709133098535

357897507 T42TT82

Ho Hitc
Ho Hit
Ho Hit
Ho Hit
Ho Hit
Ho Hit
Ho Hit
Ho Hit
Ho Hit

No Hit

No Hit
No Hit
No Hit
No Hit
No Hic

TruSeqg Adapter,
(100% owver 4S8bp)

No Hit

Index 4



Overrepresented sequences |:

e Here nearly 1/3 of sequences some type
of non-adapter contamination

o BLAST the sequence to identify it

GAAGGTCACGGCGAGRCGAGCCGTITATCATTACGATAGGTGTCARAGTGE S632816 32.03026T85T752871 No Hit
IATTCTGGIGICCTAGGCGTAGAGGARCARCACCARTCCATCCCGAACTT 494014 2.8091456822607364 HNo Hit
TCALACEAGGRARGGCTTACGGTGGATACCTAGGCACCCAGAGACGAGGSE 4466041 2.5397685344040083 No Hit
TR CEACTCTCGECALCEGEATATCTCGEGCICTCGCATCGATGARGRARC 179252 1.0192929387357474 HNo Hit
GALGGTCACGGCGAGRCGAGCCGTITATCATTACGATAGGGGTCARGTGE 171681 0.9762414422996221 HNo Hit
ARCGACTCTCGGCARCEEGATATCTCGEGCTCTCGCATCGATGARGAACGTA 143415 0.8155105483274229 HNo Hit
AGRACATGARACCOTARGCTCCCALGCAGTGEGAGGAGCCCTGGECTCTG 111584 0.63450775040686322 HNo Hit
ARRACGACTCTCGGCARCGGATATCTCGGCTCTCGCATCGATGARGARCE 111255 0.6326369351474214 Ho Hit
ATTACGATAGGTGTCARGTGEARGTGCAGTGATGTATGCAGCTGAGGCAT 73682 0.4189830085903260596 No Hit
GALGGTCACGGCCGAGRACGAGCCGTITATCATTACGATAGGTGTCARGGGE Tlaal 0.407490858025251ae HNo Hit
GEATGCGATCATACCAGCACTAATGCACCGGATCCCATCAGRACTCCGCA 69548 0.3954755612388914 HNo Hit

ATATICTGGIGICCTAGGCGTAGAGGARCARCACCARTCCATCCCGAACT 54017 0.3071e057099328803 No Hitc



Adapter Content report 8o

e Newer versions of FastQC have a separate Adapter Content report
e provides a per-base % adapter trace (Transposon-seq below)

% Adapter

100
Nlurnina Universal Adapter

Nlurnina Srmall RMNA Adapter
a0 Mextera Transposase Seguence
SOLD Srnall RMA Adapter

a0

70

50

=0

40

20

20

10

1234567851213 1819 24-25 30-31 36-37 42-43 48-49 54-535 §0-61 §6-67 72-73 78-79 84-85 90-91 9697 104-105 114-115 124-125 134-135
Fosition in read (bp)



Dealing with 3’ adapters

e Three main options:

1. Hard trim all sequences by specific amount
2. Remove adapters specifically

3. Perform a local alignment (vs global)



Hard trim by specific length

e E.g. trim 100 base reads to 50 bases

e Pro:
Can eliminate vast majority of adapter contamination
Fast, easy to perform
Low quality 3’ bases also removed

e Con:
Removes information you may want
e.g. splice junctions for RNA-seq, coverage for mutation analysis

Not suitable for very short library fragments
e.g. miRNA libraries



Trim adapters specifically

e Pro:
Can eliminate vast majority of adapter contamination

Minimal loss of sequence information
still ambiguous: are 3’-most bases part of sequence or adapter?

e Con:
Requires knowledge of insert fragment structure and adapters
Slower process; more complex to perform

Results in a heterogeneous pool of sequence lengths
can confuse some downstream tools (rare)

e Specific adapter trimming is most common for RNA-seq
most transcriptome-aware aligners need adapter-trimmed reads



FASTQ trimming 33
and adapter removal

e Tools:
cutadapt —

trimmomatic —
FASTX-Toolkit —

e Features:
hard-trim specific number of bases
trimming of low quality bases
specific trimming of adapters

support for trimming paired end read sets (except FASTX)
reads shorter than a specified length after trimming are typically discarded
leads to different sets of R1 and R2 reads unless care is taken
aligners do not like this!

cutadapt has protocol for separating reads based on internal barcode


https://cutadapt.readthedocs.io/en/stable/
http://www.usadellab.org/cms/?page=trimmomatic
http://hannonlab.cshl.edu/fastx_toolkit/

Local vs. Global alignment

e Global alignment
e requires query sequence to map fully (end-to-end) to reference

e Local alignment

o allows a subset of the query sequence to map to reference
“‘untemplated” adapter sequences will be “soft clipped” (ignored)

global (end-to-end) local (subsequence)
alignment of query alignment of query
CACAAGTACAATTATACAC CTAGCTTATCGCCCTGAAGGACT

TACATACACAAGTACAATTATACACAGACATTAGTTCTTATCGCCCTGAAAATTCTCC

reference sequence



Perform local alignment

e Pro:
mitigates adapter contamination while retaining full query sequence
minimal ambiguity
still a bit ambiguous: are 3’-most bases part of sequence or adapter?

e Con:

not supported by many aligners
e.g. not by the hisat2 or tophat splice-aware aligners for RNAseq
Tip: the STAR RNAseq aligner can perform adapter trimming as part of alignment

slower alignment process
more complex post-alignment processing may be required

e Aligners with local alignment support:
bwa mem
bowtie2 --local



Part 4:
Alignment to a
reference assembly

o Alignment overview & concepts
e Preparing a reference genome
e Alignment workflow steps
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Short Read Aligners

e Short read mappers determine placement of query sequences
(your reads) against a known reference

BLAST:
one query sequence (or a few)
want many matches for each

short read aligners
many millions of query sequences
want only one “best” mapping (or a few) for each

e Many aligners available! Two of the most popular
bwa (Burrows Wheeler Aligner) by Heng Li

bowtie2 — part of the Johns Hopkins “Tuxedo” suite of tools

Given similar input parameters, they produce similar alignments
and both run relatively quickly


http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml

Aligner criteria 3

Adoption and currency

e widespread use by bioinformatics community

e still being actively developed

Features

e well understood algorithm(s)

e support for a variety of input formats and read lengths
e detection of insertions/deletions (indels) and gaps
e makes use of base qualities

e handling of multiple matches

Usability

e configurability and transparency of options

e ease of installation and use

Resource requirements

e speed (“fast enough”)

o scalability (takes advantage of multiple processors)
e reasonable memory footprint




Mapping vs Alignment

e Mapping determines one or more positions (a.k.a. seeds or hits)
where a read shares a short sequence with the reference

e Alignment starts with the seed and determines how read bases
are best matched, base-by-base, around the seed

e Mapping quality and alignment scores are both reported

e High mapping quality # High alignment score

e mapping quality describes positioning
reflects the probability that the read is incorrectly mapped to the reported location
is a Phred score: P (incorrectly mapped) = 10 ™aPpingQuality/10

also reflects the complexity or information content of the sequence (mappability)

e alignment score describes fit

reflects the correspondence between the read and the reference sequence

Read 1 Read 2
* Maps to one location or * Maps to 2 locations
h|gh mappn’]g qua“ty GCGTAGTCTGCC ATCGGGAGATCC ATCGGGAGATCC low mapp|ng qua“ty

. Has 2 mi h (E Frer rrr LEETEEEErrnd ERRRRRERERE . h tact]
as 2 MiISMatCNes  pacceraGTeTGCCGC TAATCGGGAGATCCGC — TTATCGGGAGATCcee ° Matches perfectly
low alignment score high alignment score

reference sequence



Mapping algorithms 0

Two main mapping algorithms: spaced seeds, suffix-array tries

Colorspace aware

courtesy of Matt Vaughn, TACC trie = tree structure for fast text retrieval.



d Spaced seeds

Reference genome Short read
(> 3 gigabases)
Chr1 ACTCCOGTACTCTAAT
Chr2
Chriem=
Chrd . .
Mapping via
Extract seeds hash table
of seed
Position N seguences
Position 2 & positions
CTGC CGTA AACT AATG
Position 1 Y
ACTE GOGT AMAC TAAT AGTG COGT AGTS TAAT
ACTG #wew  ABAD | L1
wxw QOET swew  TAAT Six seed | 2 I
ACTE wwwe wwen TAAT pairs per ——| 3
. AAMC THAT read/ l 4 ]
ACTG COBT swes wews fragment L 5]
+ GCGT ABAG | 5] |

llndex seed pairs

Seed index

Subsequence

Hash table enables lookup of exact matches.

Reference Positions

ATAGCTAATCCAAA 2341, 2617264
ATAGCTAATCCAAT
ATAGCTAATCCAAC 134,13311, 732661,
ATAGCTATCCAAAG
ATAGCTAATCCATA
ATAGCTAATCCATT 3452
ATAGCTAATCCATC
ATAGCTATCCAATG 234456673

(tens of gigabytes)

ACTE #www

Look up each pair
of seeds In index

Hits identify positions
in genome where
spaced seed pair

is found

Confirm hits
b*,r checking

“s+++" positions

e

Table is sorted and complete so you
can jump immediately to matches.
(But this can take a lot of memory.)

May include N bases, sKip positions, etc.

Trapnell, C. & Salzberg, S. L. How to map billions of short
reads onto genomes. Nature Biotech. 27, 455457 (2009).



b

Burrows-Wheeler

Chr1

Reference genome Short read

(> 3 gigabases)

Burrows-Wheeler transform compresses sequence.

Chr2
Chrim=
Chrd

Concatenate into
single string

L

l

ACTOCCGTACTOTAAT

)

Burrows-Wheeler
transform and indexing

Bowtie index

(~2 gigabytes) Ha_“

n-

Look up
‘'suffixes’
of read

Hits identify

positions in
genome where

read is found -

!

e
— -
| R ———

\j

ACTCCCOTACTCTANT

T

—<< AT
_.;—'-'.?%-'\-7
™~

e

_— -~

e
o

-

o L]

.
ACTCCCOTACTCTANT

Convert each
hit back to
genome location

Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES
Output TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIOIIIT

Suffix tree enables fast lookup of subsequences.

Mapping via
suffix array tree

un

3 1

http://fen.wikipedia.org/wiki/Suffix_tree
Exact matches at all positions below a node.

Trapnell, C. & Salzberg, S. L. How to map billions of short

reads onto genomes. Nature Biotech. 27, 455-457 (2009).




Alignment via dynamic programming | ¢

* Dynamic programming algorithm

(Smith-Waterman | Needleman-Wunsch)

GAATTO CAGTT A
L O T O I O 0 O R
slofithifirhhhfhrhhfhr i a] o
slolififihififrilzlz]z]2] o
alofififz]z]zlzlz]zz]2]5]| A
Tlofifzfassfsls]slsa]s]s]| t
ClO|l (2 (213 (3|4 |4 (4 (4 414 ¢
glofif2]2fs]sfa]als]s]|5]5] o
alofif2]sls|s]a]s|s]|s|s€6| »

« Alignment score = 2
— match reward
— base mismatch penalty
— gap open penalty
— gap extension penalty

G A AT TOCAG TT A

G AATTCAGTTA

Reference sequence
ATTTGCGATCGEATGAAGACGRAR

ATTTGCGATCGGATG

ATTTGCGATCGGATGAAGACG. AR
[ [ 1] ]XX il
ATTTGCCGATCGGATETTGACTTTADL

— rewards and penalties may be adjusted for
quality scores of bases involved



Paired End mapping

e Having paired-end reads improves mapping

mapping one read with high confidence anchors the pair
even when the mate by itself maps several places equally

e Three possible outcomes of mapping an R1/R2 pair
only one of a pair might map (singleton/orphan)

both reads can map within the most likely distance range and
with correct orientation (proper pair)

both reads can map but with an unexpected insert size or
orientation, or to different contigs

e Insert size is reported in the alignment record

for both proper and discordant pairs
but insert size is only meaningful for proper pairs



fastq

QC & trim raw reads

obtain reference

assembly fastq \l, FastQC, cutadapt

bowtie2-bul

align reads to reference
[ build aligner-specific ] / SAM l: bwa aln + bwa samse or sampe

. bwa mem, or bowtie2
reference index

convert SAM to BAM

custom
binary index BAM l, samtools view
sort BAM by position
BAM l, samtools sort
AI | g n m ent handle duplicates
W kfl (optional)
O r OW Picard MarkDuplicates
BAM ‘l’ samtools rmdup
index BAM
BAM + .bai ‘l’ samtools index

alignment metrics & QC

samtools flagstat
samtools idxstats


http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml

Obtaining a reference o

e Assembled genomes
Ensembl, UCSC, Gencode for eukaryotes
FASTA files (.fa, .fasta)
annotations (genome feature files, .gtf .gff .gff3)
NCBI RefSeq (or GenBank) for prokaryotes/microbes (prefer RefSeq)
Can obtain both FASTA sequences and annotations

For species without a good assembly, the assembly of a closely
related species is often used

e A reference is just a set of sequences of interest
any set of named DNA sequences
e.g. chromosomes (partial or complete), technically referred to as contigs
a transcriptome (set of transcribed gene sequences for an organism)
MIRNA hairpin sequences from miRBase
rRNA/tRNA genes (e.qg. for filtering)
one or more amplicons or plasmid constructs



FASTA format oo

FASTA files contain a set of sequence records
can be DNA, RNA, protein sequences
sequence name line
always starts with >
- followed by a name and other (optional) descriptive information
one or more line(s) of sequence characters
never starts with >

Mitochondrial chromosome sequence, human from UCSC hg19
>chrM

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCAT
TTGGTATTTTCGTCTGGGGGGTGTGCACGCGATAGCATTGCGAGACGCTG
GAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTGCCTCATT ...

Let-7e miIRNA, human from miRBase v21

>hsa-let-7e MI0000066 Homo sapiens let-7e stem-loop
CCCGGGCUGAGGUAGGAGGUUGUAUAGUUGAGGAGGACACCCAAGGAGAUCACUAUACGG
CCUCCUAGCUUUCCCCAGG

P53 protein, from UniProt

>sp|P04637|P53 HUMAN Cellular tumor antigen p53 OS=Homo sapiens GN=TP53
MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWEFTEDPGP
DEAPRMPEAAPPVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAK ...



Reference considerations sess

Is it appropriate to your study?
e close enough to your species? complete?

From which source? And which version?
e UCSC hgl9 vs Ensembl GRCh37

What annotations exist?
o references lacking feature annotations are much more challenging

Does it contain repeats?
e if so, are they masked in your FASTA?

Watch out for sequence name issues!

e Sequence names may be different between UCSC/Ensembl

e.g. “‘chr12” vs “12”
e annotation sequence names must match names in your reference!
e very long sequence names can cause problems

rename:. >hsa-let-7e MI0000066 Homo sapiens let-7e stem-loop
to: >hsa-let-"7e



fastq

QC & trim raw reads

obtain reference
genome

wa index
fast
bowtie2-build ‘l’ asta

fastq l, FastQC, cutadapt

align reads to reference

build aligner-specific SAM ‘l' bwa aln +bwa samse or sampe
refarapiEE bwa mem, or bowtie2
convert SAM to BAM
custom
binary ind BAM l, samtools view

sort BAM by position

BAM l, samtools sort

AI | g Nnim ent [ handle duplicates ]
(optional)
Workflow "

ll Picard MarkDuplicates

BAM samtools rmdup
index BAM

BAM + .bai ‘l’ samtools index

alignment metrics & QC

samtools flagstat
samtools idxstats


http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml

Building a reference index |::

e Index format is specific to each aligner

e may take several hours to build
but you build each index once, then use for multiple alignments
e Input:
one or more FASTA files containing DNA sequences
i.e. convert RNA sequences with U’s to cDNA sequences with T'’s

annotations (genome feature files, .gtf) are sometimes also used to
build a transcriptome-aware index for RNA-seq (e.g. STAR aligner)

but annotations will definitely be needed for downstream analysis
e Output:
a number of binary files the aligner will use

e Best practice:

e Dbuild each index in its own appropriately named directory, e.g.
refs/bowtie2/UCSC/hg38
refs/lbwa/Ensembl/GRCh38



fastq

QC & trim raw reads

obtain reference
fastig

genome

align reads to reference

bwa index
fast
bowtie2-build ‘l’ asta

build aligner-specific
reference index

bwa aln + bwa samse or sampe
bwa mem, or bowtie

custom
binary index BAM l, samtools view

sort BAM by position

BAM l, samtools sort

AI | g Nnim ent [ handle duplicates ]
(optional)
Workflow "

ll Picard MarkDuplicates

BAM samtools rmdup
index BAM

BAM + .bai ‘l’ samtools index

alignment metrics & QC

samtools flagstat
samtools idxstats


http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml

SAM file format

e Aligners take FASTQ as input, output alignments
In Sequence Alignment Map (SAM) format

community file format that describes how reads
map (and align) to a reference

the Bible:
and now

e SAM file consists of

a header
includes reference sequence names and lengths
alignment records, one for each sequence read
can include both mapped and unmapped reads

alignments for R1 and R2 reads have separate records
with fields that refer to the mate

records havell fixed fields + extensible-format key:type:value tuples


http://samtools.github.io/hts-specs/SAMv1.pdf
http://samtools.github.io/hts-specs/SAMv1.pdf
http://samtools.github.io/hts-specs/SAMv1.pdf
https://github.com/samtools/hts-specs/blob/master/SAMtags.pdf
https://github.com/samtools/hts-specs/blob/master/SAMtags.pdf
https://github.com/samtools/hts-specs/blob/master/SAMtags.pdf

SAM file format
Fixed fields (tab-separated) -

Col___Field Type Regexp/Range Brief description
1___ONAME) String [!-7A-"]1{1,255} Query template NAME read name from fastq
2__FLAG Int [0,2'6-1] bitwise FLAGS
String  \*| [1-()+-<-"1[1-"1= Reference sequence NAME contig + start
Int [0,2%%-1] 1-based leftmost mapping POSition =locus
| Int [0,2%-1] MAPping Quality
String  \*| ([0-9]+[MIDNSHPX=])+ CIGAR string use this to find end coordinate
String  \*|=| [1-()+-<>-"1[!-"]1* Ref. name of the mate /next segment
 Int [0,2%-1] Pomsition of the mate /next segment
| Int [-2%%+1,2%-1] observed Template LENgth insert size, if paired
String  \*| [A-Za-z=.]+ segment SEQuence
String  [!1-71+ ASCII of Phred-scaled base QUALity+33
positive
SRR030257.264529 ( 99)QUC_012967 1521 X 29) @ = 1564 for plus
CTGGCCATTATCTCGGTGGTAGGATATGGTATGCC s
AAAAAAAA;AAAAAA??A%.;?&'3735",()0%,
XT:A:M NM:i:3 SM:i:29 AM:i:29 XM:i:3 XO:i:0 XG:i:0 MD:Z:23T0G4T4
negative
SRR030257.2669090 14? = 1458 fogtg'n”dus
CTGGCCATTATCTCGGTGGTA i ATGCGC reads

<<9:<<AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
XT:A:U NM:i:0 SM:i:37 AM:i:37 X0:i:1 X1::0 XM:i:0 XO:1:0 XG:i:0 MD:Z:36



Sometimes a CIGAR Is just a way of | o<

describing how a read is aligned...

Ref CTGGCCATTATCTO--GGTGGTAGGACATGGCATGCCC
Read adATGTCGC GTG.[TAGGAggatcc
CEOENNNNS  2S5M2T4M1D5M6S
Op BAM Description
M 0 alignment match (can be a sequence match or mismatch)
il 1 insertion to the reference
D 2 deletion from the reference “N” indicates splicing event in
N 3 skipped region from the reference RNA-seq BAMs
S il soft clipping (clipped sequences present in SEQ)
«~ H 5 hard clipping (clipped sequences NOT present in SEQ)
« P G padding (silent deletion from padded reference)
x = T sequence match .
. Rarer / newer
* X 8 sequence mismatch

CIGAR = "Concise Idiosyncratic Gapped Alignment Report"



SAM format — Bitwise flags 44

o060
Bit ee
Decimal Hex Description
1 0x1 template having multiple segments in sequencing 1 = part of aread pair
2 0x2 each segment properly aligned according to the aligner 1 = “properly” paired
4 Ox4 segment unmapped read did map =0 1 =read did not map
8 0x8 next segment in the template unmapped 1 = mate did not map
16 0x10 SEQ being reverse complemented plus strand read =0 1 = minus strand read
32 0x20 SEQ of the next segment in the template being reverse complemented 1 = mate on minus strand
64  0x40 the first segment in the template 1=Rlread
128 0x80 the last segment in the template 1=R2read

266 0x100 secondary alignment

512 0x200 not passing filters, such as platform/vendor quality controls
1024 0x400 PCR or optical duplicate
2048  0x800  supplementary alignment

1 = secondary alignment

1 = marked as duplicate
1 = maps to ALT contig

SRR030257.264529 NC 012967 1521 29 34M2S = 1564
CTGGCCATTATCTCGGTGGTAGGACATGGCATGCCC
AAAAAAAA;AAAAAA??AY%.;?&'3735",()0%,

XT:A:M NM:i:3 SM:i:29 AM:i:29 XM:i:3 XO:1:0 XG:i:0 MD:Z:23T0GAT4

SRR030257.2669090 NC_01296? 1521 60 36M = 1458

CTGGCCATTATCTCGGTGGTAGGTGATGGTATGCGC
<<9:<<AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

XT:A:U NM:i:0 SM:i:37 AM:i:37 X0:1:1 X1::0 XM:i:0 XO:1:0 XG:i:0 MD:Z:36

http://broadinstitute.github.io/picard/explain-flags.html

Decimal Hex
70 99 = 0x63
= 64 = 0x40

+ 32 + 0x20

+ 2 + 0x02

+ 1 + 0x01

99 147 = 0x93
= 128 = 0x80

+ 16 + 0x10

+ 2 + 0x02

+ 1 + 0x01


https://wikis.utexas.edu/display/CoreNGSTools/Decimal+and+Hexadecimal
http://broadinstitute.github.io/picard/explain-flags.html
http://broadinstitute.github.io/picard/explain-flags.html
http://broadinstitute.github.io/picard/explain-flags.html

SAM file format HE:
key:type:value tuples

https://github.com/samtools/hts-specs/blob/master/SAMtags.pdf

Tag' Type Description
X7 ? Reszerved fields for end users (together with Y? and Z7)
alignment detail: describes alignment of query to refgrence
String for mismatching positions. Regez: [0-91+(([A-Z]1\"[A-Z1+) [0-9]+)#°
Mg Mapping quahity of the mate/next segment
@ Number of reported alignments that contains the query i the current record
1

Edit distance to the reference, including amhiguous bases but excluding chipping
edit distance = # mismatches + insertions + deletions* " "

R R

2The MDD field aims to achieve SNP /indel calling without looking at the reference. For example, a string ‘10A5"ACE’
means from the leftmost reference base in the alipnment, there are 10 matches followed by an A on the reference which
is different from the aligned read base; the next 5 reference bases are matches followed by a 2bp deletion from the
reference; the deleted sequence 18 AC; the last 6 bases are matches. The MD field ought to match the CIGAR string.

SRR030257.264529 99 NC 012967 1521 29 34M2S = 1564 79
CTGGCCATTATCTCGGTGGTAG ACF\TG ATGCCC

AAAAAALASALAAAA??AY.;?&'3735",()0%,
XT:A: 5M:i:29 AM:i:29 XM:i:3 XO:i:0 }{Gl@ziﬂd@



https://github.com/samtools/hts-specs/blob/master/SAMtags.pdf
https://github.com/samtools/hts-specs/blob/master/SAMtags.pdf
https://github.com/samtools/hts-specs/blob/master/SAMtags.pdf

fastq

QC & trim raw reads

[ obtain reference ]

genome fastq l, FastQC, cutadapt

bowtie2-build

align reads to reference
[ build aligner-specific ] / SAM ‘l' bwa aln + <or sampe

. bwa mem, or bo
reference index

bwa index
‘l’ fasta

convert SAM to BAM

custom
binary index

BAM l, samtools sort

AI | g Nnim ent [ handle duplicates ]
(optional)
Workflow "

ll Picard MarkDuplicates

BAM samtools rmdup
index BAM

BAM + .bai ‘l’ samtools index

alignment metrics & QC

samtools flagstat
samtools idxstats


http://samtools.sourceforge.net/samtools.shtml

SAM /| BAM files os

e SAM and BAM are two forms of the same data
SAM — Sequence Alignment Map
plain text format
BAM — Binary Alignment Map
same data in a custom compressed (gzip’d) format

e Differences
BAMs are much smaller than SAM files due to compression

BAM files support fast random access; SAM files do not
requires the BAM file to be indexed

most tools support BAM format and may require indexing

e Best practices

remove intermediate SAM and BAM files created during alignment
and only save the final sorted, indexed BAM

keep your alignment artifacts (BAM, statistics files, log files) separate
from the original FASTQ files

alignments can be re-generated — raw sequences cannot



fastq

QC & trim raw reads

[ obtain reference ]

genome fastq l, FastQC, cutadapt

bowtie2-build

align reads to reference
[ build aligner-specific ] / SAM l: bwa aln + bwa samse or sampe

. bwa mem, or bowtie2
reference index

bwa index
‘l’ fasta

convert SAM to BAM

custom
binary index BAM ‘L

sort BAM by position

samtools view

] BAM l, samtools sort
AI | g Nnim ent [ handle duplicates ]
(optional)
WO r kfl OW ‘l’ Picard MarkDuplicates
BAM samtools rmdup

index BAM

BAM + .bai ‘l’ samtools inde

alignmen ' Q€

samtools flagstat
samtools idxstats


http://broadinstitute.github.io/picard/
http://samtools.sourceforge.net/samtools.shtml

Sorting / indexing BAM files | :

e SAM created by aligner contains read records in name order

e same order as read names in the input FASTQ file
R1, R2 have adjacent SAM records
e SAM -> BAM conversion does not change the name-sorted order

e Sorting BAM puts records in position (locus) order

e Dby contig name then leftmost start position

contig name order given in SAM/BAM header
based on order of sequences in FASTA used to build reference

e sorting is very compute, I/O and memory intensive!
can take hours for large BAMs

e Indexing a locus-sorted BAM allows fast random access
e creates a small, binary alignment index file (.bai)
e (uite fast



Handling Duplicates :

e Optional step, but very important for many protocols

e Definition of alignment duplicates:
for single-end reads, or singleton/discordant paired-end reads:
alignments have the same start positions; actual sequence not considered
for properly paired reads:

pairs have same external coordinates (5 + 3’ coordinates of the insert)
actual insert sequence not considered

e Two choices for handling:

samtools rmdup — removes duplicates entirely
fast, but data is lost
does not intelligently handle data from multiple lanes
Picard MarkDuplicates — flags duplicates only (0x400 BAM flag)
slower, but all alignments are retained
alignments from different lanes/replicates can be considered separately

both tools are quirky in their own ways



fastq

QC & trim raw reads

[ obtain reference ]

genome fastq l, FastQC, cutadapt

bowtie2-build

align reads to reference
[ build aligner-specific ] / SAM l: bwa aln + bwa samse or sampe

. bwa mem, or bowtie2
reference index

bwa index
‘l’ fasta

convert SAM to BAM

_ custpm
binary index BAM l, samtools view
sort BAM by position
] BAM l, samtools sort
AI | g n m ent handle duplicates
(optional)

WO r kfl OW BAM ‘l’ Picard MarkDuplicates

samtools rmdup

index BAM

B . i,

alignment metrics & QC

samtools flagstat
samtools idxstats



http://samtools.sourceforge.net/samtools.shtml

Alignment metrics $

e samtools flagstat
e simple statistics based on alignment record flag values
total sequences (R1+R2); total mapped (0x4 flag = 0)
number properly paired (0x2 flag = 1)
number of duplicates (0x400 flag = 1 if duplicates were marked)
e BAM file must be indexed

161490318 + 0 in total (QC-passed reads + QC-failed reads)
0 + 0 secondary

0 + 0 supplementary

31602827 + 0 duplicates

158093331 + 0 mapped (97.90% : N/A)

161490318 + 0 paired in sequencing

80745159 + 0 readl

80745159 + 0 read2

153721151 + 0 properly paired (95.19% : N/A)

156184878 + 0 with itself and mate mapped

1908453 + 0 singletons (1.18% : N/A)

1061095 + 0 with mate mapped to a different chr

606632 + 0 with mate mapped to a different chr (mapQ>=5)



Alignment metrics

e Samtools idxstats

reports number of reads aligning to each contig

contig length # mapped # not mapped

chrI 230218 553609 2183

chrII 813184 1942996 5605

chrIII 316620 764449 2246

chrIV 1531933 3630237 10049

chrV 576874 1432940 4149 For alignments to transcripts
chrvI 270161 658338 1859 : . .
GhrVIT 1090940 2628838 7283 e contig names WI|| be tra_n.scrlpt names
chrVIII 562643 1347702 4064 - the # mapped is your initial
chrIX 439888 1079444 3057 guantification measure!
chrXx 745751 1861421 5576

chrXI 666816 1595615 4026

chrXII 1078177 4595061 23201

chrXIII 924431 2253102 6260

chrXIV 784333 1861773 5367

chrXv 1091291 2625205 7080

chrXVI 948066 2266237 6233

chrM 85779 210993 956

* 0 0 2291804



samtools notes

e There are 2 main “eras” of the samtools program
“old” samtools
v 0.1.19 last stable version
‘new” samtools

v 1.0, 1.1, 1.2 — avoid these (very buggy!)
v 1.3+ stable

some functions have different arguments!

e samtools v 1.3+ has several new features
samtools stats
produces many different statistical reports

faster sorting
can use multiple threads



Computing average insert size

e Needed for some downstream analysis
e.g. ChlP-seqg or RNA-seq alignment

e Simple awk script that computes average insert size for a BAM
-F 0x4 filter to samtools view says only consider mapped reads
technically “not unmapped”
the -f Ox2 filter says consider only properly paired reads
they have reliable “insert size" values in column 9
insert size values are negative for minus strand reads

can ignore because each proper pair will have one plus and one minus strand
alignment, with same insert size

samtools view -F 0x4 -f 0x2 my pe data.bam | awk \
'BEGIN{ FS="\t"; sum=0; nrec=0; }
{ if ($9 > 0) {sum += $9; nrec++;} }
END{ print sum/nrec; }'



Interpreting alignment metrics

Table below is taken from a spreadsheet | keep on lyer lab alignments
all are yeast paired-end read datasets from ChlP-seq experiments

e Alignment rates
samples 1-3 have excellent alignment rates & good rates of proper pairing

sample 4
has an unusually low alignment rate for a ChiP-seq dataset
has a median insert size of only 109, and these were un-trimmed 50 bp reads
could 3' adapter contamination be affecting the alignment rate?
= try re-aligning the sequences after trimming, say to 35 bases
= see if the alignment rate improves

totSeq totAlign % align numPair pePrAln % prPr nDup % dup  multiHit % multi iszMed

#
1
2
3
4

149 644 522 145 228 810 97 0% 74,822 411 72221 545 965% 49745225  34% 16,216,807 11%
981,186 860,940 gf 7% 490533 424 915 86.6% 609,378 T1% 127,987 15%
225733458 21,928,789 97 1% 11,286,674 10,783,971 955% 9408725  43% 3,711,004 17%
7,200,628 3460992  481% 3600314 1626121 452% 1234524  36% 649,630 19%

181
148
132
109



e Duplication rates

Interpreting alignment metrics

sample 2 is not very deeply sequenced but has a high duplication rate (71%)
subtracting duplicates from total aligned leaves only ~250,000 non-dup reads
not enough for further analysis (prefer 500,000+)
sample 3 has reasonable sequencing depth with substantial duplication (43%)
still leaves plenty of non-duplicate reads (> 12 million)
sample 1 is incredibly deeply sequenced
this is a control dataset (Mock ChIP), so is a great control to use (very complex!)

has a very low duplication rate (34%) considering that
the yeast genome is only ~12 Mbase

~145M mapped / 24M bases (+/- strands) should be ~6x coverage of every position!

so how is this low duplication rate possible?

# totSeq totAlign % align numPair pePrAln % prPr nDup % dup  multiHit % multi iszMed
1 149,644 822 145 228 810 97 0% 74,822 411 72221545 965% 49745225  34% 16,216,807 11% 181
2 981,186 860,940 87 7% 490593 424 915 86.6% 609,378  T1% 127,987 156% 148
3 22573348 21,928,789 97 1% 11,286,674 10783971 955% 9408725 43% 3,711,004 17% 132
4 7,200,628 3460992  481% 3600314 1626121 452% 1234524  36% 649,690 19% 109



Read vs fragment duplication

e Consider the 4 fragments below
e 4 R1reads (pink), 4 R2 reads (blue)
e Duplication when only 1 end considered
e Al, B1, C1 have identical sequences, D1 different

2 unique + 2 duplicates = 50% duplication rate

o B2, C2, D2 have identical sequences, A2 different

2 unique + 2 duplicates = 50% duplication rate

e Duplication when both ends considered

o fragments B and C are duplicates (same external sequences)
3 unique + 1 duplicate = 25% duplication rate

Al
Bl
C1l
D1

N\ %

B2
C2
D2




Alignment wrap up 2

e Many tools involved
e choose one or two and learn their options well

e Many steps are involved in the full alignment workflow

e important to go through manually a few times for learning
but gets tedious quickly!

e Dbest practice
automate series of complex steps by wrapping into a pipeline script
e.g. bash or python script

e Bioinformatics team has a set of pipeline scripts available

e at TACC: in shared project directory
Iwork/projects/BiolTeam/common/script/

align_bowtie2_illumina.sh, align_bwa_illumina.sh, trim_adapters.sh, etc.
e also available in /mnt/bioi/script on BRCF pods



Final thoughts

o Good judgement comes from experience
unfortunately...
o EXxperience comes from bad judgement!

e SO0 go get started making
your 15t 1,000 mistakes....




