
Sequence Alignment/Map (SAM) Format
Version 0.1.2-draft (20090416)

1. Introduction
1.1. Purpose
This specification aims to define a generic nucleotide alignment format, SAM, that describes the alignment of query
sequences or sequencing reads to a reference sequence or assembly, and:

• Is flexible enough to store all the alignment information generated by various alignment programs;
• Is simple enough to be easily generated by alignment programs or converted from existing alignment formats;
• Is compact in file size;
• Allows most of operations on the alignment to work on a stream without loading the whole alignment into memory;
• Allows the file to be indexed by genomic position to efficiently retrieve all reads aligning to a locus.

The document also describes the format of the binary equivalent to SAM and the format of alignment index.

1.2. Scope
This document specifies the formats of the text and binary alignment files and describes the indexing algorithm and the
format of index files. It does not specify any application programming interfaces (APIs) or language bindings.

1.3. Nomenclature
Reference sequence. An existing sequence typically from previous studies. A reference sequence can be, but not is
restricted to, a chromosome, a supercontig/scaffold or a contig from de novo assembly.

Query sequence. A sequence that is aligned to the reference sequences. A query sequence can be, but is not restricted
to, a sequencing read, a cDNA or a contig. Typically, a query sequence is shorter than a target sequence.

Alignment. An alignment record describes a relationship between one query and one reference sequence. Insertions
and deletions are allowed on either sequence. A query or a target sequence can be present in more than one alignment
records.

1.4. Rationale
1.4.1. Text vs. binary format

SAM is a TAB-delimited text format. It is easy to understand, easy to parse, easy to generate and easy to check for
errors. However, SAM is a bit slow to parse. Therefore we introduce a binary equivalent to SAM, called BAM, for
intensive data processing. We envision that BAM will be used in most production pipelines, but that SAM, which is
simpler to parse and can be produced by streaming from BAM, may be useful for interconversion with external
applications and for exploratory analyses.

1.4.2. Flexibility: storing optional fields

Different alignment programs may produce different information which may be useful to the downstream analyses. A
generic alignment format should allow for such information to be stored conveniently. In SAM, each alignment must
contain a fixed number of mandatory fields that describe the key information about the alignment (such as coordinate
detailed alignment and sequences) and may contain a variable number of optional fields which are less important or
aligner specific.

1.4.3. Flexibility: storing various types of alignments

SAM is able to store clipped alignments, spliced alignments, multi-part alignments, padded alignments and alignments in
color space. The extended CIGAR string is the key to describing these types of alignments.

Clipped alignment. In Smith-Waterman alignment, a sequence may not be aligned from the first residue to the last one.
Subsequences at the ends may be clipped off. We introduce operation ʻSʼ to describe (softly) clipped alignment. Here is
an example. Suppose the clipped alignment is:

 REF: AGCTAGCATCGTGTCGCCCGTCTAGCATACGCATGATCGACTGTCAGCTAGTCAGACTAGTCGATCGATGTG
 READ: gggGTGTAACC-GACTAGgggg

where on the read sequence, bases in uppercase are matches and bases in lowercase are clipped off. The CIGAR for
this alignment is: 3S8M1D6M4S.

Spliced alignment. In cDNA-to-genome alignment, we may want to distinguish introns from deletions in exons. We
introduce operation ʻNʼ to represent long skip on the reference sequence. Suppose the spliced alignment is:

 REF: AGCTAGCATCGTGTCGCCCGTCTAGCATACGCATGATCGACTGTCAGCTAGTCAGACTAGTCGATCGATGTG
 READ: GTGTAACCC................................TCAGAATA

where ʻ...ʼ on the read sequence indicates the intron. The CIGAR for this alignment is: 9M32N8M.

Multi-part alignment. One query sequence may be aligned to multiple places on the reference genome, either with or
without overlaps. In SAM, we keep multiple hits as multiple alignment records. To avoid presenting the full query
sequence multiple times for non-overlapping hits, we introduce operation ʻHʼ to describe hard clipped alignment. Hard
clipping (H) is similar to soft clipping (S). They are different in that hard clipped subsequence is not present in the
alignment record. The example alignment in “clipped alignment” can also be represented with CIGAR: 3H8M1D6M4H, but
in this case, the sequence stored in SAM is “GTGTAACCGACTAG”, instead of “GGGGTGTAACCGACTAGGGGG” if soft clipping
is in use.

Padded alignment. Most sequence aligners only give the sequences inserted to the reference genome, but do not
present how these inserted sequences are aligned against each other. Alignment with inserted sequences fully aligned is
called padded alignment. Padded alignment is always produced by de novo assemblers and is important for an
alignment viewer to display the alignment properly. To store padded alignment, we introduce operation ʻPʼ which can be
considered as a silent deletion from padded reference sequence. In the following example, GA on READ1 and A on
READ2 are inserted to the reference. With unpadded CIGAR, we would not be able to distinguish the following padded
multi-alignments:

 REF: CACGATCA**GACCGATACGTCCGA REF: CACGATCA**GACCGATACGTCCGA
 READ1: CGATCAGAGACCGATA READ1: CGATCAGAGACCGATA
 READ2: ATCA*AGACCGATAC READ2: ATCAA*GACCGATAC
 READ3: GATCA**GACCG READ3: GATCA**GACCG

The padded CIGAR are different:

 READ1: 6M2I8M READ1: 6M2I8M
 READ2: 4M1P1I9M READ2: 4M1I1P9M
 READ3: 5M2P5M READ3: 5M2P5M

Note that it is hard to convert unpadded CIGAR to padded one. Fully resolving the alignment between inserted
sequences would essentially require a de novo assembler. However, it is easy vice versa. By simply removing all P
operations we get the CIGAR without padding.

Alignments in color space. Color alignments are stored as normal nucleotide alignments with additional tags
describing the raw color sequences, qualities and color-specific properties.

1.4.4. Storing paired-end reads

A mapped read pair is stored in two (or more if multiple hits are stored) separate alignment records. The two reads in the
pair have identical read pair name and are distinguished by their flag field (Section 2.2.2). The mate coordinate and the
inferred insert size are recommended (not required) to be present. A tool is also provided to reconstruct mating
information from BAM, although this is done at the cost of intensive computation and large disk space.

If in a read pair one read is mapped but the other not, the unmapped read can be absent from the alignment file or may
be stored in two optional ways. The first method is to record no coordinate for the unmapped read (i.e. reference name =
"*"). When using this method, flag bit 0x08 must be set on the mapped mate. The second method is to give the

SAM Format Specification 0.1.2-draft (20090416)

- 2 -

unmapped read a coordinate for sorting/indexing purposes only (this is generally the coordinate of the mapped mate).
When using the second method, flag bit 0x4 must be set on the unmapped read, flag bit 0x08 must be set on the
mapped mate.

1.4.5. File compression and random access in a compressed file

Typically, the size of a BAM file can be reduced by nearly a factor of four (to ~27%) under gzip/zlib compression. This
compression ratio is significant. To achieve smaller file size, we always compress a BAM file with the BGZF library,
developed by Bob Handsaker. BGZF is a stand-alone library that achieves similar compression ratio to gzip/zlib while
supporting random access using virtual file offsets. A file compressed with BGZF is also gzip/zlib compatible in that we
can use gzip/zlib to decompress the compressed file, although random file access is not supported in this case.

1.4.6. Ordering the alignments

An SAM/BAM file can be sorted by the reference coordinates, by query names, or unsorted. However, most operations
on the alignments only work on a BAM sorted by the leftmost reference coordinate. Such an order is crucial to data
processing on a stream and to indexing. A command-line tool is provided to sort an unsorted BAM in the required order.

1.4.7. Indexing alignments

Indexing paves the way for quick retrieval of alignments overlapping with a specified region. As BAM is supposed to work
with spliced alignments, indexing must be efficient for alignments spanning long distance on the reference genome. A
binning index as is used in the UCSC Genome Browser suits this goal better than a linear index alone. The binning index
is further improved by being coupled with a simple linear index. For short read alignments, one seek call is needed in
most cases to retrieve alignments.

1.5. Format implementation
SAM/BAM is implemented in two forms: a development library and a command-line tool. The library provides developers
with basic I/O on SAM/BAM as well as routines on manipulating the alignment, such as merging, sorting, indexing and
viewing. The command-line tool is built upon the library and is more convenient to non-developers. However, describing
implementation details is out of the scope of this document.

1.6. Contributions
The major contributors to this specification are (in no particular order):

• Heng Li (Sanger Institute)
• Bob Handsaker (Broad Institute)
• Jue Ruan (Beijing Genomics Institute)
• Richard Durbin (Sanger Institute)
• Gabor Marth (Boston College)
• Michael Stromberg (Boston College)
• Fiona Hyland (Applied Biosystems)
• Goncalo Abecasis (University of Michigan)
• Richa Agarwala (NCBI)

SAM Format Specification 0.1.2-draft (20090416)

- 3 -

2. SAM Format Specification
The SAM format consists of one header section and one alignment section. The whole header section can be absent,
but keeping the header is recommended.

Here is an example of an SAM file:

@HD VN:1.0
@SQ SN:chr20 AS:HG18 LN:62435964
@RG ID:L1 PU:SC_1_10 LB:SC_1 SM:NA12891
@RG ID:L2 PU:SC_2_12 LB:SC_2 SM:NA12891
read_28833_29006_6945 99 20 chr20 28833 10M1D25M = 28993 195 \
 AGCTTAGCTAGCTACCTATATCTTGGTCTTGGCCG <<<<<<<<<<<<<<<<<<<<<:<9/,&,22;;<<< \
 MF:i:130 NM:i:1 H0:i:0 H1:i:0 RG:Z:L1
read_28701_28881_323b 147 30 chr20 28834 35M = 28701 -168 \
 ACCTATATCTTGGCCTTGGCCGATGCGGCCTTGCA <<<<<;<<<<7;:<<<6;<<<<<<<<<<<<7<<<< \
 MF:i:18 NM:i:0 H0:i:1 H1:i:0 RG:Z:L2

2.1. Header section
Each header line begins with character ʻ@ʼ followed by a two-letter record type code. In the header, each line is TAB-
delimited and each data field has an explicit field tag, which is represented using two ASCII characters, as is described
below. The field type defines the content and format of the data in the field.

The following table give the defined record types and tags. Tags with ʻ*ʼ are required when the record type is present.

Type Tag Description
HD - header VN* File format version.HD - header

SO Sort order. Valid values are: unsorted, queryname or coordinate.
HD - header

GO Group order (full sorting is not imposed in a group). Valid values are: none, query or reference.
SQ
-
Sequence
dictionary

SN* Sequence name. Unique among all sequence records in the file. The value of this field is used
in alignment records.

SQ
-
Sequence
dictionary

LN* Sequence length.

SQ
-
Sequence
dictionary

AS Genome assembly identifier. Refers to the reference genome assembly in an unambiguous
form. Example: HG18.

SQ
-
Sequence
dictionary

M5 MD5 checksum of the sequence in the uppercase (gaps and space are removed)

SQ
-
Sequence
dictionary

UR URI of the sequence

SQ
-
Sequence
dictionary

SP Species.
RG
-
read group

ID* Unique read group identifier. The value of the ID field is used in the RG tags of alignment
records.

RG
-
read group SM* Sample (use pool name where a pool is being sequenced)

RG
-
read group

LB Library

RG
-
read group

DS Description

RG
-
read group

PU Platform unit (e.g. lane for Illumina or slide for SOLiD); should be a full, unambiguous identifier

RG
-
read group

PI Predicted median insert size (maybe different from the actual median insert size)

RG
-
read group

CN Name of sequencing center producing the read.

RG
-
read group

DT Date the run was produced (ISO 8601 date or date/time).

RG
-
read group

PL Platform/technology used to produce the read.
PG
-
Program

ID* Program namePG
-
Program

VN Program version
PG
-
Program

CL Command line

2.2. Alignment Section
2.2.1. Overview

The alignment section consists of multiple TAB-delimited lines with each line describing an alignment. Each line is:

SAM Format Specification 0.1.2-draft (20090416)

- 4 -

 <QNAME> <FLAG> <RNAME> <POS> <MAPQ> <CIGAR> <MRNM> <MPOS> <ISIZE> <SEQ> <QUAL> \
 [<TAG>:<VTYPE>:<VALUE> [...]]

The format of each field is explained in the following table. More detailed descriptions are given in the sections below.

Field Regular expression Range Description
QNAME [^ \t\n\r]+ Query pair NAME if paired; or Query NAME if unpaired 2
FLAG [0-9]+ [0,216-1] bitwise FLAG (Section 2.2.2)
RNAME [^ \t\n\r@=]+ Reference sequence NAME 3
POS [0-9]+ [0,229-1] 1-based leftmost POSition/coordinate of the clipped sequence
MAPQ [0-9]+ [0,28-1] MAPping Quality (phred-scaled posterior probability that the mapping

position of this read is incorrect) 4
CIGAR ([0-9]+[MIDNSHP])+|* extended CIGAR string
MRNM [^ \t\n\r@]+ Mate Reference sequence NaMe; “=” if the same as <RNAME> 3

MPOS [0-9]+ [0,229-1] 1-based leftmost Mate POSition of the clipped sequence
ISIZE -?[0-9]+ [-229,229] inferred Insert SIZE 5
SEQ [acgtnACGTN.=]+|* query SEQuence; “=” for a match to the reference; n/N/. for ambiguity;

cases are not maintained 6,7

QUAL [!-~]+|* query QUALity; ASCII-33 gives the Phred base quality 6,7

TAG [A-Z][A-Z0-9] TAG
VTYPE [AifZH] Value TYPE
VALUE [^\t\n\r]+ match <VTYPE> (space allowed)

Notes:

1. QNAME and FLAG are required for all alignments. If the mapping position of the query is not available, RNAME and
CIGAR are set as “*”, and POS and MAPQ as 0. If the query is unpaired or pairing information is not available, MRNM
equals “*”, and MPOS and ISIZE equal 0. SEQ and QUAL can both be absent, represented as a star “*”. If QUAL is
not a star, it must be of the same length as SEQ.

2. The name of a pair/read is required to be unique in the SAM file, but one pair/read may appear multiple times in
different alignment records, representing multiple or split hits. The maximum string length is 254.

3. If SQ is present in the header, RNAME and MRNM must appear in an SQ header record.
4. Field MAPQ considers pairing in calculation if the read is paired. Providing MAPQ is recommended. If such a

calculation is difficult, 255 should be applied, indicating the mapping quality is not available.
5. If the two reads in a pair are mapped to the same reference, ISIZE equals the difference between the coordinate of

the 5ʼ-end of the mate and of the 5ʼ-end of the current read; otherwise ISIZE equals 0 (by the “5ʼ-end” we mean the
5ʼ-end of the original read, so for Illumina short-insert paired end reads this calculates the difference in mapping
coordinates of the outer edges of the original sequenced fragment). ISIZE is negative if the mate is mapped to a
smaller coordinate than the current read.

6. Color alignments are stored as normal nucleotide alignments with additional tags describing the raw color
sequences, qualities and color-specific properties (see also Note 5 in section 2.2.4).

7. All mapped reads are represented on the forward genomic strand. The bases are reverse complemented from the
unmapped read sequence and the quality scores and cigar strings are recorded consistently with the bases. This
applies to information in the mate tags (R2, Q2, S2, etc.) and any other tags that are strand sensitive. The strand
bits in the flag simply indicates whether this reverse complement transform was applied from the original read
sequence to obtain the bases listed in the SAM file.

2.2.2. The <flag> field

Field <flag> is a bitwise flag. The meaning of predefined bits is shown in the following table:

Flag Description
0x0001 the read is paired in sequencing, no matter whether it is mapped in a pair
0x0002 the read is mapped in a proper pair (depends on the protocol, normally inferred during alignment) 1
0x0004 the query sequence itself is unmapped
0x0008 the mate is unmapped 1
0x0010 strand of the query (0 for forward; 1 for reverse strand)

SAM Format Specification 0.1.2-draft (20090416)

- 5 -

Flag Description
0x0020 strand of the mate 1
0x0040 the read is the first read in a pair 1,2

0x0080 the read is the second read in a pair 1,2

0x0100 the alignment is not primary (a read having split hits may have multiple primary alignment records)
0x0200 the read fails platform/vendor quality checks
0x0400 the read is either a PCR duplicate or an optical duplicate

Notes:

1. Flag 0x02, 0x08, 0x20, 0x40 and 0x80 are only meaningful when flag 0x01 is present.
2. If in a read pair the information on which read is the first in the pair is lost in the upstream analysis, flag 0x01 should

be present and 0x40 and 0x80 are both zero.

2.2.3. Extended CIGAR format

A CIGAR string is comprised of a series of operation lengths plus the operations. The conventional CIGAR format allows
for three types of operations: M for match or mismatch, I for insertion and D for deletion. The extended CIGAR format
further allows four more operations, as is shown in the following table, to describe clipping, padding and splicing:

op Description
M Match or mismatch
I Insertion to the reference
D Deletion from the reference
N Skipped region from the reference
S Soft clip on the read (clipped sequence present in <seq>)
H Hard clip on the read (clipped sequence NOT present in <seq>)
P Padding (silent deletion from the padded reference sequence)

2.2.4. Format of optional fields

Optional fields are in the format: <TAG>:<VTYPE>:<VALUE>. Each tag is encoded in two alphanumeric characters and
appears only once for an alignment. The <VTYPE> follows Perlʼs rule (see also perldoc -f pack). Valid types in SAM are:

Type Description
A Printable character
i Signed 32-bit integer
f Single-precision float number
Z Printable string
H Hex string

Predefined tags are shown in the following table. You can freely add new tags, and if a new tag may be of general
interest, you can email samtools-help@lists.sourceforge.net to add the new tag to the specification. Note that tags
started with ʻXʼ, ʻYʼ and ʻZʼ are reserved for local use and will not be formally defined in any future version of this
specification.

Tag Type Description
X? ? Reserved fields for end users (together with Y? and Z?)
RG Z Read group. Value matches the header RG-ID tag if @RG is present in the header.
LB Z Library. Value should be consistent with the header RG-LB tag if @RG is present.
PU Z Platform unit. Value should be consistent with the header RG-PU tag if @RG is present.
PG Z Program that generates the alignment; match the header PG-ID tag if @PG is present.
AS i Alignment score generated by aligner
SQ H Encoded base probabilities for the suboptimal bases at each position 1
MQ i The mapping quality score the mate alignment

SAM Format Specification 0.1.2-draft (20090416)

- 6 -

mailto:samtools-help@lists.sourceforge.net
mailto:samtools-help@lists.sourceforge.net

Tag Type Description
NM i Number of nucleotide differences (i.e. edit distance to the reference sequence) 2
H0 i Number of perfect hits 2
H1 i Number of 1-difference hits (an in/del counted as a difference) 2
H2 i Number of 2-difference hits (an in/del counted as a difference) 2
UQ i Phred likelihood of the read sequence, conditional on the mapping location being correct 5
PQ i Phred likelihood of the read pair, conditional on both the mapping locations being correct 5
NH i Number of reported alignments that contains the query in the current record
IH i Number of stored alignments in SAM that contains the query in the current record
HI i Query hit index, indicating the alignment record is the i-th one stored in SAM
MD Z String for mismatching positions in the format of [0-9]+(([ACGTN]|\^[ACGTN]+)[0-9]+)* 2,3

CS Z Color read sequence on the same strand as the reference 4
CQ Z Color read quality on the same strand as the reference; encoded in the same way as <QUAL> 4

CM i Number of color differences 2
GS Z Sequence in the overlap 6
GQ Z Quality in the overlap encoded in the same way as the QUAL field 6

GC Z CIGAR-like string describing the overlaps in the format of [0-9]+[SG] 6

R2 Z Sequence of the mate.
Q2 Z Phred quality for the mate (encoding is the same as <QUAL>).
S2 H Encoded base probabilities for the other 3 bases for the mate-pair read. Same encoding as SQ 1

CC Z Reference name of the next hit; “=” for the same chromosome
CP i Leftmost coordinate of the next hit
SM i Mapping quality if the read is mapped as a single read rather than as a read pair
AM i Smaller single-end mapping quality of the two reads in a pair
MF i MAQ pair flag (MAQ specific)

Notes:

1. In the SQ field, the highest 2 bits give the second most likely base; the next 6 bits give the phred scaled log likelihood
ratio of the second to the third most likely base calls.

2. Mismatches/insertions/deletions in clipped sequences are not counted.
3. The MD field aims to achieve SNP/indel calling without looking at the reference. SOAP and Eland SNP callers prefer

such information. For example, a string “10A5^AC6” means from the leftmost reference base in the alignment, there
are 10 matches followed by an A on the reference which is different from the aligned read base; the next 5 reference
bases are matches followed by a 2bp deletion from the reference; the deleted sequence is AC; the last 6 bases are
matches. The MD field should match the CIGAR string, although an SAM parser may not check this optional field.

4. On a raw SOLiD read, the first nucleotide is the primer base and the first color is the one between the primer base
and the first nucleotide from the sample being sequenced. The primer base and the first color must be present in CS.

5. On the assumption that each base on a read is independent, UQ equals the sum of phred scores at mismatch
positions, plus a term for the indels in the alignment. Tag PQ further includes the phred likelihood of insert size.

6. Some bases from reads generated by Complete Genomics may come from the same nucleotide. The SEQ and QUAL
fields always store the flattened sequence and quality in that bases and qualities from the same nucleotide are
collapsed to one. The three optional tags GS/GQ/GC describes how to generate the raw read. For example, given a
raw read AAACGCGAAAA, ʻCGʻ starting from 4th and 6th position come from the same oligonucleotide. Suppose this
read is mapped without gaps. In SAM, the read alignment is stored as: SEQ=AAACGAAAA, CIGAR=9M, GS:Z:CGCG,
and GC:Z:3S2G4S, where GS keeps the bases in the overlap and GC says that to get the raw read sequence, we
need to copy 3 bases from SEQ, copy 2+2 bases from GS and then copy 4 bases from the SEQ field again.

SAM Format Specification 0.1.2-draft (20090416)

- 7 -

3. BAM Format Specification
BAM is compressed in the BGZF format. All integers in BAM are little-endian, regardless of the machine endianness. The
whole format is formally described in the following table (values in [] are the default when the corresponding information
is not available):

FieldFieldField Description Type Value
magicmagicmagic BAM magic number char[4] BAM\1
l_textl_textl_text Length of the header text, including any zero padding 1 int32_t
texttexttext Plain header text in SAM; not necessarily zero terminated 1 char[l_text]
n_refn_refn_ref # reference sequences int32_t

List of reference information (n = n_ref)List of reference information (n = n_ref)List of reference information (n = n_ref)List of reference information (n = n_ref)List of reference information (n = n_ref)List of reference information (n = n_ref)
l_namel_name Length of the reference name plus 1 (including NULL) int32_t
namename Name; NULL terminated char[l_name]
l_refl_ref Length of the reference sequence int32_t

List of alignments (until the end of the file)List of alignments (until the end of the file)List of alignments (until the end of the file)List of alignments (until the end of the file)List of alignments (until the end of the file)List of alignments (until the end of the file)
block_sizeblock_size Length of the remainder of the block int32_t
rIDrID Reference sequence ID (-1≤rID<n_ref) int32_t [-1]
pospos 0-based leftmost coordinate int32_t [-1]
bin_mq_nlbin_mq_nl bin<<16|mapQual<<8|read_name_len (including NULL) 2 uint32_t
flag_ncflag_nc flag<<16|cigar_len uint32_t
read_lenread_len Length of the read int32_t
mate_rIDmate_rID Mate reference sequence ID (-1≤mate_rID<n_ref) int32_t [-1]
mate_posmate_pos Leftmost coordinate of the mate int32_t [-1]
ins_sizeins_size Insert size of the read pair (if paired) int32_t [0]
read_nameread_name Read name, null terminated char[read_name_len]
cigarcigar Cigar: op_len<<4|op. Op: MIDNSHP=>0123456 uint32_t[cigar_len]
seqseq 4-bit encoded read: =ACGTN=>0,1,2,4,8,15; the earlier base

is stored in the high-order 4 bits of the byte.
char[(read_len+1)/2]

qualqual Phred base quality (0xFF if absent) uint8_t[read_len]
List of auxiliary data (until the end of this alignment block)List of auxiliary data (until the end of this alignment block)List of auxiliary data (until the end of this alignment block)List of auxiliary data (until the end of this alignment block)List of auxiliary data (until the end of this alignment block)

tag Two-character tag char[2]
val_type Value type: AcCsSiIfZH. An integer may be stored as cCsSiI,

depending on the magnitude of the integer. 3,4
char

value Content by val_type

Notes:

1. In the current version of specification, the header text in SAM is literally copied to BAM without parsing. In the future
version, we may replace the “text” field with multiple dictionaries. The “l_text” field will indicate the total length of
these dictionaries on disk. Having “l_text” guarantees that the extra structure in “text” will not break an old BAM
parser.

2. “Bin” is used by indexing. Given an alignment in [beg,end), the bin is calculated by function reg2bin() described in
section 4.3. Although bin can be calculated on the fly, precalculating it accelerates the retrieval of alignments in a
specified region.

3. In BAM, an integer may be stored as a signed 8-bit integer (c), unsigned 8-bit integer (C), signed short (s), unsigned
short (S), signed 32-bit (i) or unsigned 32-bit integer (I), depending on the signed magnitude of the integer. However,
in SAM, all types of integers are presented as type ʻiʼ. Having multiple precision on integers helps to reduce the disk
space.

SAM Format Specification 0.1.2-draft (20090416)

- 8 -

4. BGZF Compression
BGZF is block compression implemented on top of the standard gzip file format. The goal of BGZF is to provide good
compression while allowing efficient random access to the BAM file for indexed queries. The BGZF format is "gunzip
compatible", in the sense that a compliant gunzip utility can decompress a BGZF compressed file.

A BGZF archive is a series of concatenated BGZF blocks. Each BGZF block is itself a spec-compliant gzip archive
which contains an "extra field" in the format described in RFC1952. The gzip file format allows the inclusion of
application-specific extra fields and these are ignored by compliant decompression implementation. The gzip
specification also allows gzip files to be concatenated. The result of decompressing concatenated gzip files is the
concatenation of the uncompressed data.

Each BGZF block contains a standard gzip file header with the following standard-compliant extensions:

a) The F.EXTRA bit in the header is set to indicate that extra fields are present.
b) The extra field used by BGZF uses the two subfield ID values 66 and 67 (ascii 'BC').
c) The length of the BGZF extra field payload (field LEN in the gzip specification) is 2 (two bytes of payload).
d) The payload of the BGZF extra field is a 16-bit unsigned integer in little endian format.

 This integer gives the size of the containing BGZF block minus one.

On disk, a full BGZF file is (all integers are little endian as is required by RFC1952):

FieldFieldField Description Type Value
List of compression blocks (until the end of the file)List of compression blocks (until the end of the file)List of compression blocks (until the end of the file)List of compression blocks (until the end of the file)List of compression blocks (until the end of the file)List of compression blocks (until the end of the file)

ID1ID1 gzip IDentifier1 uint8_t 31
ID2ID2 gzip IDentifier2 uint8_t 139
CMCM gzip Compression Method uint8_t 8
FLGFLG gzip FLaGs uint8_t 4
MTIMEMTIME gzip Modification TIME uint32_t

XFLXFL gzip eXtra FLags uint8_t

OSOS gzip Operating System uint8_t

XLENXLEN gzip eXtra LENgth uint16_t

Extra subfield(s) (total size=XLEN)Extra subfield(s) (total size=XLEN)Extra subfield(s) (total size=XLEN)Extra subfield(s) (total size=XLEN)Extra subfield(s) (total size=XLEN)
Additional RFC1952 extra subfields if presentAdditional RFC1952 extra subfields if presentAdditional RFC1952 extra subfields if presentAdditional RFC1952 extra subfields if present

SI1 Subfield Identifier1 uint8_t 66
SI2 Subfield Identifier2 uint8_t 67
SLEN Subfield LENgth uint16_t 2
BSIZE total Block SIZE minus 1 uint16_t

Additional RFC1952 extra subfields if presentAdditional RFC1952 extra subfields if presentAdditional RFC1952 extra subfields if presentAdditional RFC1952 extra subfields if present
CDATACDATA Compressed DATA by zlib::deflate() uint8_t[BSIZE-XLEN-19]

CRC32CRC32 CRC-32 uint32_t

ISIZEISIZE Input SIZE (length of uncompressed data) uint32_t

BGZF files support random access through the BAM file index. To achieve this, the BAM file index uses virtual file offsets
into the BGZF file. Each virtual file offset is 64 bits, divided as follows:

 coffset : 48 | uoffset : 16

The most significant 48 bits (coffset) are an unsigned byte offset into the BGZF file to the beginning of a BGZF block.
The least significant 16 bits (uoffset) are an unsigned byte offset into the uncompressed data stream represented by that
BGZF block. Virtual file offsets can be compared, but subtraction between virtual file offsets and addition between a
virtual offset and an integer are both disallowed.

4.1. Implementation Note
There is a known bug in the Java GZIPInputStream class that concatenated gzip archives cannot be successfully
decompressed by this class. BGZF files can be created and manipulated using the built-in Java util.zip package, but
naive use of GZIPInputStream on a BGZF file will not work due to this bug.

SAM Format Specification 0.1.2-draft (20090416)

- 9 -

5. Indexing BAM
Indexing aims to achieve fast retrieval of alignments overlapping a specified region without going through the whole
alignments. BAM must be sorted by the reference ID and then the leftmost coordinate before indexing.

5.1. Algorithm
5.1.1. Basic binning index

The UCSC binning scheme was suggested by Richard Durbin and Lincoln Stein and is explained by Kent et al. (2002). In
this scheme, each bin represents a contiguous genomic region which is either fully contained in or non-overlapping with
another bin; each alignment is associated with a bin which represents the smallest region containing the entire
alignment. The binning scheme is essentially a representation of R-tree. A distinct bin uniquely corresponds to a distinct
internal node in a R-tree. Bin A is a child of Bin B if the region represented by A is contained in B.

To find the alignments that overlap a specified region, we need to get the bins that overlap the region, and then test each
alignment in the bins to check overlap. To quickly find alignments associated with a specified bin, we can keep in the
index the start file offsets of chunks of alignments which all have the bin. As alignments are sorted by the leftmost
coordinates, alignments having the same bin tend to be clustered together on the disk and therefore usually a bin is only
associated with a few chunks. Traversing all the alignments having the same bin usually needs a few seek calls. Given
the set of bins that overlap the specified region, we can visit alignments in the order of their leftmost coordinates and
stop seeking the rest when an alignment falls outside the required region. This strategy saves half of the seek calls in
average.

In BAM, each bin may span 229, 226, 223, 220, 217 or 214 bp. Bin 0 spans a 512Mbp region, bins 1-8 span 64Mbp, 9-72
8Mbp, 73-584 1Mbp, 585-4680 128Kbp and bins 4681-37449 span 16Kbp regions.

5.1.2. Reducing small chunks

Around the boundary of two adjacent bins, we may see many small chunks with some having a shorter bin while the rest
having a larger bin. To reduce the number of seek calls, we may join two chunks having the same bin if they are close to
each other. After this process, a joined chunk will contain alignments with different bins. We need to keep in the index the
file offset of the end of each chunk to identify its boundaries.

5.1.3. Combining with linear index

For an alignment starting beyond 64Mbp, we always need to seek to some chunks in bin 0, which can be avoided by
using a linear index. In the linear index, for each tiling 16384bp window on the reference, we record the smallest file
offset of the alignments that start in the window. Given a region [rbeg,rend), we only need to visit a chunk whose end file
offset is larger than the file offset of the 16kbp window containing rbeg.

With both binning and linear indices, we can retrieve alignments in most of regions with just one seek call.

5.1.4. A conceptual example

Suppose we have a genome shorter than 144kbp. we can design a binning scheme which consists of three types of bins:
bin 0 spans 0-144kbp, bin 1, 2 and 3 span 48kbp and bins from 4 to 12 span 16kbp each:

0 (0-144kbp)0 (0-144kbp)0 (0-144kbp)0 (0-144kbp)0 (0-144kbp)0 (0-144kbp)0 (0-144kbp)0 (0-144kbp)0 (0-144kbp)
1 (0-48kbp)1 (0-48kbp)1 (0-48kbp) 2 (48-96kbp)2 (48-96kbp)2 (48-96kbp) 3 (96-144kbp)3 (96-144kbp)3 (96-144kbp)

4 (0-16k) 5 (16-32k) 6 (32-48k) 7 (48-64k) 8 (64-80k) 9 (80-96k) 10 11 12

An alignment starting at 65kbp and ending at 67kbp would have a bin number 8, which is the smallest bin containing the
alignment. Similarly, an alignment starting at 51kbp and ending at 70kbp would go to bin 2, while an alignment between
[40k,49k] to bin 0. Suppose we want to find all the alignments overlapping region [65k,71k). We first calculate that bin 0,
2 and 8 overlap with this region and then traverse the alignments in these bins to find the required alignments. With a
binning index alone, we need to visit the alignment at [40k,49k] as it belongs to bin 0. But with a linear index, we know
that such an alignment stops before 64kbp and cannot overlap the specified region. A seek call can thus be saved.

5.2. Alignment Index Format

SAM Format Specification 0.1.2-draft (20090416)

- 10 -

FieldFieldFieldField Description Type Value
magicmagicmagicmagic Magic string char[4] BAI\1
n_refn_refn_refn_ref # reference sequences int32_t

List of indices (n = n_ref)List of indices (n = n_ref)List of indices (n = n_ref)List of indices (n = n_ref)List of indices (n = n_ref)List of indices (n = n_ref)List of indices (n = n_ref)
n_binn_binn_bin # distinct bins (for the binning index) int32_t

List of distinct bins (n = n_bin)List of distinct bins (n = n_bin)List of distinct bins (n = n_bin)List of distinct bins (n = n_bin)List of distinct bins (n = n_bin)List of distinct bins (n = n_bin)
binbin Distinct bin uint32_t
n_chunkn_chunk # chunks int32_t

List of chunks (n = n_chunk)List of chunks (n = n_chunk)List of chunks (n = n_chunk)List of chunks (n = n_chunk)List of chunks (n = n_chunk)
chunk_beg (Virtual) file offset of the start of the chunk uint64_t
chunk_end (Virtual) file offset of the end of the chunk uint64_t

n_intvn_intvn_intv # 16Kbp intervals (for the linear index) int32_t
List of intervals (n = n_intv)List of intervals (n = n_intv)List of intervals (n = n_intv)List of intervals (n = n_intv)List of intervals (n = n_intv)List of intervals (n = n_intv)

ioffsetioffset (Virtual) file offset of the first alignment in the interval uint64_t

5.3. Useful Codes/Pseudo-codes
In the following, each bin may span 229, 226, 223, 220, 217 or 214 bp. Bin 0 spans a 512Mbp region, bins 1-8 span 64Mbp,
9-72 8Mbp, 73-584 1Mbp, 585-4680 128Kbp and bins 4681-37449 span 16Kbp regions.

/* calculate the bin given an alignment in [beg,end) */
int reg2bin(int beg, int end)
{
 --end;
 if (beg>>14 == end>>14) return ((1<<15)-1)/7 + (beg>>14);
 if (beg>>17 == end>>17) return ((1<<12)-1)/7 + (beg>>17);
 if (beg>>20 == end>>20) return ((1<<9)-1)/7 + (beg>>20);
 if (beg>>23 == end>>23) return ((1<<6)-1)/7 + (beg>>23);
 if (beg>>26 == end>>26) return ((1<<3)-1)/7 + (beg>>26);
 return 0;
}
/* calculate list of bins that may overlap with region [rbeg,rend) */
#define MAX_BIN (((1<<18)-1)/7)
int reg2bins(int rbeg, int rend, uint16_t list[MAX_BIN])
{
 int i = 0, k;
 --rend;
 list[i++] = 0;
 for (k = 1 + (rbeg>>26); k <= 1 + (rend>>26); ++k) list[i++] = k;
 for (k = 9 + (rbeg>>23); k <= 9 + (rend>>23); ++k) list[i++] = k;
 for (k = 73 + (rbeg>>20); k <= 73 + (rend>>20); ++k) list[i++] = k;
 for (k = 585 + (rbeg>>17); k <= 585 + (rend>>17); ++k) list[i++] = k;
 for (k = 4681 + (rbeg>>14); k <= 4681 + (rend>>14); ++k) list[i++] = k;
 return i; // #elements in list[]
}

SAM Format Specification 0.1.2-draft (20090416)

- 11 -

A. Genotype Likelihood Format version 3 (GLFv3)
The GLF format stores the probability of a genotype given data. It is not part of the SAM/BAM format, but is one of the
outputs of the SAMtools utilities. Its specification is described here as appendix.

Like in BAM, all integers in GLF are stored in the little-endian byte order.

FieldFieldField Description Type Value
magicmagicmagic GLFv3 magic number char[4] GLF\3
l_textl_textl_text Length of the header text, including any zero padding int32_t
texttexttext Text char[l_text]

List of reference information until the end of the fileList of reference information until the end of the fileList of reference information until the end of the fileList of reference information until the end of the fileList of reference information until the end of the fileList of reference information until the end of the file
l_namel_name Length of the reference sequence name plus 1 (including NULL) int32_t
namename Name; NULL terminated char[l_name]
ref_lenref_len length of the reference sequence uint32_t

List of sites until a record with rtype==0List of sites until a record with rtype==0List of sites until a record with rtype==0List of sites until a record with rtype==0List of sites until a record with rtype==0
rtype_refrtype_ref record_type<<4|ref_base; 0..15=>XACMGRSVTWYHKDBN uint8_t
if
rtype
==1

offset offset from the precedent record1 uint32_tif
rtype
==1

min_depth min_lk<<24|read_depth (min_lk capped at 255) uint32_t
if
rtype
==1

rmsMapQ RMS of mapping qualities of reads covering the site uint8_t

if
rtype
==1

lk likelihood of each genotype in the order of AA..AT..CC..CT..GG..TT uint8_t[10]
if
rtype
==2

offset offset from the precedent record1,2 uint32_tif
rtype
==2

min_depth min_lk<<24|read_depth uint32_t
if
rtype
==2 rmsMapQ RMS of mapping qualities of reads covering the site uint8_t

if
rtype
==2

lkHom1 likelihood of the first homozygous indel allele (capped at 255) uint8_t

if
rtype
==2

lkHom2 likelihood of the second homozygous indel allele (capped at 255) uint8_t

if
rtype
==2

lkHet likelihood of a heterozygote (capped at 255) uint8_t

if
rtype
==2

indelLen1 length of the first indel allele (positive=ins; negative=del; zero=no-indel) int16_t

if
rtype
==2

indelLen2 length of the second indel allele int16_t

if
rtype
==2

indelSeq1 sequence of the first indel allele char[indelLen1]

if
rtype
==2

indelSeq2 sequence of the second indel allele char[indelLen2]
if 0 endMarker end of this chromosome; no data in this record (null)

Notes:

1. Field offset equals the zero-based coordinate of the current record minus the coordinate of the precedent record. For
the first record in a reference sequence, the coordinate of the precedent record is assumed to be zero. Offset is non-
negative.

2. If a sequence is inserted between position [x,x+1] on the reference sequence, the coordinate of this record is x; if the
sequence between [x,y] on the reference is deleted, the coordinate of this record is x.

SAM Format Specification 0.1.2-draft (20090416)

- 12 -

