Introduction to R
Programming

Nichole Bennett
Introduction to Biological Statistics

Why use R?

difficult to replicate steps in Excel; R scripts allow us to save our
steps for later

does manipulations on the data without changing the data
more flexible than Excel

widely used in the biological sciences

online help/development communities

generates publication-quality figures

free, open source

Entering input

X <=5

once you enter an expression at the prompt
and press enter, R evaluates it for you

Objects

» 5 basic “atomic” classes of object:
— character
— numeric (real numbers)
— integer
— complex
— logical (True/False)

class(x)
as.*(x)

nonsensical coercion results in NA

Attributes

R objects can have attributes

* hames, dimnames

« dimensions

e class

* length

user-defined attributes/metadata

attributes|()

Vectors and Matrices

« vector contains objects of the same class
— list is a special type of vector that can contain different types

vector(1l,2,3)
X <- ¢c(1,2,3)

 if you try to mix objects in a vector, R will coerce them to the same
class

 matrices are vectors with a dimension attribute
m <- matrix(nrow=2, ncol=3)

dim(m)
[1] 2 3

Factors

» special type of vector used to create categorical data
— can be ordered or unordered

 treated specially by modeling functions like 1m() and
glm()

* using factors with labels is better than using integers
(more descriptive!)

— ex. ‘male” & “female” vs. “1” & “2”

factor ()

Factors

* have levels as an attribute
« by default in alphabetical order

» can order the levels by using 1levels argument to
factor ()

factor(c(llyeslI, llyeslll lanII, llyesll) ,
levels=c(llyesll, llnoll))

important in linear modeling because first level is used as
baseline level

Missing Values

* NaN for undefined mathematical operations
* NA for missing values

Is.na()
is.nan()

* NA have a class also (i.e. can be integer,
character, etc.)

* NaN is always NA but reverse is not always
true

Data Frames

store tabular data (much of what we use!)
— columns can be of different classes

special type of list where every element of the list has the same
length

elements of list = columns

length of list = rows

usually created using data.frame()

input dataframe using read.csv() or read.table()

can convert to matrix using data.matrix()

Names

o vectors, lists, data frames, etc. can have
names

» useful for writing readable code and
creating self-describing objects

names ()

Subsetting

« different operators:

— [always returns object of same class as original;
can be used to return more than one element

— [[used to extract elements of a list or a data
frame; can only be used to extract a single
element; class of returned object not necessarily
list or data frame

— S used to extract elements of a list or a data
frame by name

Subsetting

* using a numerical index
X[1]
note difference from Python indexing!

* using a logical index
X[x>25]

more fun with logical evaluators

$1n%
match ()
which()

any ()
all()

== !=I > < >=, <=, |I &, !

i1s.na, 1is.null, 1is.infinite,
1s.missing

4 4

Subsetting a Matrix

* use [i,j] type indices

P4
=

Subsetting a List

« can use either brackets or dollar sign

X <- list(apples=1:4, oranges=0.2)
X[1]

Sapples

[1] 1 2 3 4

X[[1]]

[1] 1 2 3 4
XxSoranges
[1] 0.2

Removing NA Values

« common task in data manipulation
 create a logical vector that tells you where the NA’s are

X <- ¢c(l1l, 2, NA, 4, 5, NA)

bloop <- 1is.na(Xx)

bloop

[1] FALSE FALSE TRUE FALSE FALSE TRUE
X[!bloop]

[1] 1 2 4 5

* can also use complete.cases () to pull out non-
missing values from large objects

Input

Workspace Management

getwd ()
setwd ()

file.path()
dir.create()

list.files()

1s()
rm()
methods ()

Character-delimited files

 characters used to indicate column breaks
— tab
— COmma

 hard returns indicate row breaks

 be careful of line endings in Windows vs.
Unix!

— DOS uses carriage return and line feed “\r\n”
— Unix uses just line feed “\n”

Formatting Guidelines

» use a text file (extensions “.txt” or “.csv”)

» column headers should not contain special
characters or spaces
— for instance “Plot 1” becomes “Plot.1” in R

Formatting Guidelines

 Wide format

DATE DAY LOCATION TIME 1 TEMP 1 RH 1 TIME 2 TEMP 2 RH 2
1-Jun 4 A 7:17 22.5 91.6 8:20 24.9 89.1
1-Jun 4 B 7:59 24.7 88.6 9:04 25.9 85.7
1-Jun 4 C 7:42 23.4 91.7 8:35 27.2 83.5
1-Jun 4 D 7:34 22.4 93.6 8:28 25.4 88.1
2-Jun 5 A 7:31 20.4 94.8 8:28 25.4 88.1
2-Jun 5 B 7:24 20 92.7 8:23 23.2 89.9
2-Jun 5 C 7:04 20.7 90 8:08 21.2 91.5
2-Jun 5 D 7:48 20.2 92.8 8:41 23.6 88.6
* Long format
DATE DAY LOCATION TIME TEMP RH
1-Jun 4 A 7:17 22.5 91.6
1-Jun 4 A 8:20 24.9 89.1
1-Jun 4 A 9:15 26.8 86.7
1-Jun 4 A 10:22 30.7 73.2
1-Jun 4 A 11:09 30.4 66.5
1-Jun 4 B 7:59 24.7 88.6
1-Jun 4 B 9:04 25.9 85.7
1-Jun 4 B 10:11 28.7 79.6
_____ 1-Jun 4 B 10:55 30.1 71.5
1-Jun 4 B 11:58 33 58.4

Reading Data

* principle functions for reading in data

—read.table() orread.csv() fortabular
data

— readLines to read lines of a text file

— source for reading in an R code files

Reading in files with
read.table()

e one of most commonly used
 useful arguments

file

header

sep

colClasses

Nnrows
comment.char
skip
stringsAsFactors

Reading in tab-delimited files with
read.table()

« for most (smallish) files, you can just use read.table()
without specifying any other arguments

snakedata <- read.table(“snakes.txt”)

* R automatically
— skips lines that begin with #
— assumes there is no header line
— counts rows, allocates memory
— figures out column variable type

« read.csv() works the same way except the default
separator is a comma

Reading in larger datasets with
read.table()

* make a rough calculation of memory
needed to store your dataset—if this is
more than your computer’'s RAM, stop
there (tricks for this in later modules)

» check the help page for read.table()
for advice on how to optimize it for large
datasets

Reading in larger datasets with
read.table()

* set comment.char=*" if you have no
commented lines

* use the colClasses argument
— specifying this makes R run faster

e set nrows

— doesn’t make R run faster but helps with
memory usage

— okay to overestimate a little

Good idea to know your system

* memory

* OS

32 bit vs. 64 bit

other users using it?

other applications running?

Rough calculation of memory
needed for dataset

=number of elements (rows x columns)
multiplied by memory needed for object

rule of thumb is that you will need about twice
as much as this (some memory needed to
read it into R)

Using Datasets with Missing Values

* You may not always have a full data set. R can handle missing
values in several ways. The option you choose may impact the
results of your analysis.

na.strings = “NA”

na.action = na.fail
na.action = na.omit
na.action = na.exclude
na.action = na.pass

Indexing

data[row number, column number]
data[row number,]
data[row number 1l: row number 2,]

data[column number 1: column number 2]

data[,column number 1l: column number 2]

Subsetting

dataSnamel

subset (data = data, namel == Xx)

subset (data=data, namel == X & name2 == y)

Confirming Proper Data Loading

head(data)
tail(data)
names (data)

length()

length(data)
length(datal[l,])

length(data[,1])

Dataset Summary

str(data)

summary (data)

Check Data Types

typeof ()

typeof (data)
typeof (data[l,])

typeof (data[,1])

Adding Columns and Rows

col.values<-c(new column data)

data[‘new.column.name’]<- values

names ()
cbind(data, wvalues)

row.values<-c(new row data)
rbind(data, row.values)

Getting stuff from the outside world
file
gzfile bzfile

url

readLines ()

writeLines ()

Output

Files saved by default in
working directory

write.csv(”/file/path/data.csv”)

Functions for Writing Files (Output)

write.table(file.name, data)

write.csv(file.name, data)

Functions for Writing Files (Output)

pdf (file.name)

plot(x,y)
dev.off ()

png(file.name)

plot(x,y)
dev.off ()

Tips for getting help in R

Good Resource: Eric Raymond’s
“How to ask questions the smart
Way!!

getting help within R

help.start
help(1lm)

?1lm

example (lm)
help.search(lm)

?2?21m

getting help elsewhere

Google
Rseek
Stack Overflow

R Help Mailing List

before asking other people

- search archives of forum to see if someone else has asked that
question

» search the web
» search the manual
« search the FAQ on the R website

 search for the answer by inspection or experimentation
 ask a skilled friend

* if you are a skilled programmer, take a look at the source code

» important to let people know you've tried the above things before asking
them through email or on a forum

when asking a question on a
mailing list or forum provide:

« what steps will reproduce the problem?
« what is the expected output?
« what did you see instead?

« what version of the product (R, any packages, etc.)
are you using?

« what OS are you using?
 additional information

be smart about your subject line for the email or
forum question
— specify version of R, OS, and problem

hint and tips for asking your question

* describe the goal, not the step you used (someone may
be able to help you find a better way)

* be explicit about your question
* give hints as to where you think the problem might be
* be courteous

 provide minimum amount of information necessary
(more volume is not necessarily helpful)

« follow up with the solution if you find it (helps others
with the same problem)

« don’t claim you’ve found a bug
» don’t post to multiple mailing lists

