
Introduction to R
Programming!

Nichole Bennett!
Introduction to Biological Statistics!

Why use R?!
•  difficult to replicate steps in Excel; R scripts allow us to save our

steps for later!

•  does manipulations on the data without changing the data!

•  more flexible than Excel!

•  widely used in the biological sciences!

•  online help/development communities!

•  generates publication-quality figures!

•  free, open source!

Entering input!
x <- 5 # assignment operator!
comments after hash!

once you enter an expression at the prompt !
and press enter, R evaluates it for you!

Objects!
•  5 basic “atomic” classes of object:!

–  character!
–  numeric (real numbers)!
–  integer!
–  complex!
–  logical (True/False)!

class(x) # get class of object!
as.*(x) # coerce to different class!

nonsensical coercion results in NA!

Attributes!
R objects can have attributes!
•  names, dimnames!
•  dimensions!
•  class!
•  length!
•  user-defined attributes/metadata!

attributes() # see attributes of!
!object!

Vectors and Matrices!
•  vector contains objects of the same class!

–  list is a special type of vector that can contain different types!

vector(1,2,3) # create a vector!
x <- c(1,2,3) # also works!

•  if you try to mix objects in a vector, R will coerce them to the same
class!

•  matrices are vectors with a dimension attribute !

m <- matrix(nrow=2, ncol=3)!
dim(m)!
[1] 2 3!

Factors!
•  special type of vector used to create categorical data!

–  can be ordered or unordered!

•  treated specially by modeling functions like lm() and
glm()!

•  using factors with labels is better than using integers
(more descriptive!)!
–  ex. “male” & “female” vs. “1” & “2”!

factor() # create factor (char vector)!

Factors!
•  have levels as an attribute!

•  by default in alphabetical order!

•  can order the levels by using levels argument to
factor()!

factor(c(“yes”, “yes”, “no”, “yes”),
levels=c(“yes”, “no”))!

important in linear modeling because first level is used as
baseline level!

Missing Values!
•  NaN for undefined mathematical operations!
•  NA for missing values!

is.na() # test if object NA!
is.nan() # test if object NaN!

•  NA have a class also (i.e. can be integer,
character, etc.)!

•  NaN is always NA but reverse is not always
true!

Data Frames!
•  store tabular data (much of what we use!)!

–  columns can be of different classes!

•  special type of list where every element of the list has the same
length!

•  elements of list = columns!

•  length of list = rows!

•  usually created using data.frame() !

•  input dataframe using read.csv() or read.table()!

•  can convert to matrix using data.matrix()!

Names!
•  vectors, lists, data frames, etc. can have

names!

•  useful for writing readable code and
creating self-describing objects!

names()!

Subsetting!
•  different operators:!

– [always returns object of same class as original;
can be used to return more than one element !

– [[used to extract elements of a list or a data
frame; can only be used to extract a single
element; class of returned object not necessarily
list or data frame !

– $ used to extract elements of a list or a data
frame by name!

Subsetting!
•  using a numerical index!
x[1] # will return 1st element!
note difference from Python indexing!!

•  using a logical index!
x[x>25]!

more fun with logical evaluators!
• ! %in%!
• ! match()!
• ! which()!
• ! any()!
• ! all()!
• ! ==, !=, >, <, >=, <=, |, &, !!
• ! is.na, is.null, is.infinite,
is.missing!

Subsetting a Matrix!
•  use [i,j] type indices!

m[1,2]!
x[1,] # first row of matrix!
x[,2] # second column of matrix!

Subsetting a List!
•  can use either brackets or dollar sign!

x <- list(apples=1:4, oranges=0.2)!
x[1]!
$apples!
[1] 1 2 3 4!

x[[1]]!
[1] 1 2 3 4!
x$oranges!
[1] 0.2!

Removing NA Values!
•  common task in data manipulation!
•  create a logical vector that tells you where the NA’s are!

x <- c(1, 2, NA, 4, 5, NA)!
bloop <- is.na(x)!
bloop!
[1] FALSE FALSE TRUE FALSE FALSE TRUE!
x[!bloop]!
[1] 1 2 4 5!

•  can also use complete.cases() to pull out non-
missing values from large objects!

Input!

Workspace Management!
getwd() ! !# returns the current working directory!
setwd() ! !# sets the working directory when given

! ! !a file path!
file.path() # converts a text string to a file path!
 !! ! ! ! !(useful when concatenating strings)!
dir.create() # create a new directory (folder) in !
 ! ! ! ! !the current working directory!
list.files()!# see what files are in our working

! ! ! ! !directory!
ls() ! ! !# see what is in our workspace!
rm() ! ! !# remove objects from workspace!
methods()! !# list all available methods for function!
!! !!

Character-delimited files!
•  characters used to indicate column breaks!

–  tab!
–  comma!

•  hard returns indicate row breaks!

•  be careful of line endings in Windows vs.
Unix!!
– DOS uses carriage return and line feed “\r\n”!
– Unix uses just line feed “\n”!

Formatting Guidelines !
•  use a text file (extensions “.txt” or “.csv”)!

•  column headers should not contain special
characters or spaces!
–  for instance “Plot 1” becomes “Plot.1” in R!

Formatting Guidelines!
•  Wide format!

•  Long format!

Reading Data!
•  principle functions for reading in data!

– read.table() or read.csv() for tabular
data!

– readLines to read lines of a text file!

– source for reading in an R code files!

Reading in files with
read.table()!

•  one of most commonly used!
•  useful arguments!

file # name of file or filepath!
header # does the file have a header row?!
sep # how are columns separated?!
colClasses # classes of each column!
nrows # number of rows!
comment.char # comment character!
skip # number of lines to skip!
stringsAsFactors # code character
variables as factors?!

Reading in tab-delimited files with
read.table()!

•  for most (smallish) files, you can just use read.table()
without specifying any other arguments!

snakedata <- read.table(“snakes.txt”)!

•  R automatically!
–  skips lines that begin with #!
–  assumes there is no header line!
–  counts rows, allocates memory!
–  figures out column variable type!

•  read.csv() works the same way except the default
separator is a comma!

Reading in larger datasets with
read.table()!

•  make a rough calculation of memory
needed to store your dataset—if this is
more than your computer’s RAM, stop
there (tricks for this in later modules)!

•  check the help page for read.table()
for advice on how to optimize it for large
datasets!

Reading in larger datasets with
read.table()!

•  set comment.char=“” if you have no
commented lines!

•  use the colClasses argument!
– specifying this makes R run faster!

•  set nrows!
– doesn’t make R run faster but helps with

memory usage!
– okay to overestimate a little!

Good idea to know your system!
•  memory!

•  OS!

•  32 bit vs. 64 bit!

•  other users using it?!

•  other applications running?!

Rough calculation of memory
needed for dataset!

=number of elements (rows x columns)
multiplied by memory needed for object!

rule of thumb is that you will need about twice
as much as this (some memory needed to
read it into R) !

Using Datasets with Missing Values!
•  You may not always have a full data set. R can handle missing

values in several ways. The option you choose may impact the
results of your analysis.!

Arguments to read() functions indicate which
values are “missing”:!

na.strings = “NA”!

Arguments to analysis functions indicate how to
handle missing values:!

na.action = na.fail!
na.action = na.omit!
na.action = na.exclude!
na.action = na.pass!

Indexing!
reference cells by position!
data[row number, column number]!

extract one complete row!
data[row number,]!

extract a set of rows!
data[row number 1: row number 2,]!

 !!

extract a set of columns!
data[column number 1: column number 2]!
data[,column number 1: column number 2]!

Subsetting!
extract column ‘name1’ from dataset ‘data’!

data$name1!

extract all rows in data for which the value in
column‘name1’ is equal to x!

subset(data = data, name1 == x)!

extract all rows in data for which the value in
column ‘name1’ is equal to x and the value in
column ‘name2’ is equal to y!

subset(data=data, name1 == x & name2 == y)!

Confirming Proper Data Loading!
head(data) # print the first 6 rows to screen!
tail(data) # print the last 6 rows to the screen!
names(data) # print the column names to screen!

check that you have the expected number of columns
and rows using the length() function:!

check number of columns (use any column index)!
length(data)!
length(data[1,])!

check number of rows (use any row index)!
length(data[,1])!

Dataset Summary!

str(data) #structure of dataset!

summary(data) # summary stats!

Check Data Types!
Ensure you and R both see the data the same way

using the typeof() function:!

overall and row data types are likely “list”!
typeof(data)!
typeof(data[1,])!

column data type may vary!
typeof(data[,1])!

Adding Columns and Rows!
Directly add a new row comprised of a vector ‘values’. If

‘values’ is only one item (e.g., 5), that item is repeated
in every row. This is called ‘recycling’.!

col.values<-c(new column data)!

New column is automatically named ‘new.name’!
data[‘new.column.name’]<- values!

Columns are bound, but no name is assigned to the new
one. Use function names() to assign name manually.!

cbind(data, values)!

Add rows using rbind() or by manually editing your
data file!

row.values<-c(new row data)!
rbind(data, row.values)!

Getting stuff from the outside world!

file # opens a connection to a file!
can use gzfile or bzfile for
compressed files!

url # opens a webpage connection!

can use readLines() and!
!!writeLines() on these!

Output!

Files saved by default in  
working directory!

Specify an alternate location
by writing out a full file
path:!

write.csv(“/file/path/data.csv”)!

Functions for Writing Files (Output)!
Text – functions simultaneously open empty file,

write data under the given name, and close the
file!

write.table(file.name, data) # delimiter = space!

write.csv(file.name, data) # delimiter = comma!

Functions for Writing Files (Output)!
Graphics - must open the file with one of the

functions below, then call separate functions
to write the plot and close the file!

pdf(file.name) # open a PDF!
plot(x,y) ! !! # write the file!
dev.off() !! !! ! # close graphics device!

png(file.name) # write a PNG!
plot(x,y) ! !! # write the file!
dev.off() !! !! ! # close graphics device!

Tips for getting help in R!

Good Resource: Eric Raymond’s
“How to ask questions the smart

way”!

getting help within R!
help.start # general help!
help(lm) # help on lm function!
?lm # same thing!
example(lm) # example using lm!
help.search(lm) # search for help!
??lm # same thing!

getting help elsewhere!
•  Google!

•  Rseek!
•  !
•  Stack Overflow!

•  R Help Mailing List!

before asking other people!
•  search archives of forum to see if someone else has asked that

question!

•  search the web!

•  search the manual!

•  search the FAQ on the R website!

•  search for the answer by inspection or experimentation!
•  ask a skilled friend!

•  if you are a skilled programmer, take a look at the source code!

•  important to let people know you’ve tried the above things before asking
them through email or on a forum!

when asking a question on a
mailing list or forum provide:

•  what steps will reproduce the problem?!
•  what is the expected output?!
•  what did you see instead?!
•  what version of the product (R, any packages, etc.)

are you using?!
•  what OS are you using?!
•  additional information!
•  be smart about your subject line for the email or

forum question!
–  specify version of R, OS, and problem!

hint and tips for asking your question

•  describe the goal, not the step you used (someone may
be able to help you find a better way)!

•  be explicit about your question!
•  give hints as to where you think the problem might be!
•  be courteous!
•  provide minimum amount of information necessary

(more volume is not necessarily helpful)!
•  follow up with the solution if you find it (helps others

with the same problem) !
•  don’t claim you’ve found a bug!
•  don’t post to multiple mailing lists!

