
Generalized Linear Models

September 19, 2014

Motivation

It is common in biology to measure responses on different
metric spaces:

I Counts:
species abundances, # of mutations, etc.

I Categories (bounded counts):
counts of alleles, animal choices of prey items, etc.

I Proportions:
percent cover of vegetation, allele frequencies, etc.

I Continuous all-positive data:
mutation rates, survival times, etc.

All of these are on a bounded interval, ie. [0, ∞)

Motivation

Type of metric often associated with several families of
distributions:

I Counts ⇒
Poisson, negative binomial, geometric ∈ (0, ∞)

I Bounded counts ⇒
binomial, multinomial, hypergeometric ∈ (0, N)

I Continous all-positive ⇒
Gamma, Weibull, inverse Gaussian, exponential ∈ [0, ∞)

I Proportions ⇒
beta, logit-normal ∈ [0, 1]

Italicized families are canonical (can be fit with glm() in base
R). Other families are implemented in various packages.

Poisson and binomial families are the most frequently used.

Counts: Poisson distribution

The Poisson distribution models counts Y , and has a single
parameter (the rate).

Y ∼ Po(λ)

The rate (λ) is the mean (or expected) count. The variance
equals the mean.

λ = 0.5 λ = 2 λ = 7 λ = 15

0.0

0.2

0.4

0.6

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Values of hypothetical count data (Y)

Pr
ob

ab
ili

ty
D

en
sit

y

Bounded Counts: Binomial
The binomial distributions models number of successes Y out
of a given number of trials.

Parameters are the probability of success φ and the fixed # of
trials n (fixed = known beforehand).

Y ∼ Bi(φ,n)

For example, if we measure 3 viable seeds out of 30 seeds,

Y = 3 ∼ Bi(φ, 30)

φ is the quantity of interest, and is bounded at [0, 1]. The mean
is φn, and the variance is a function of the mean and # trials:

φn(1− φ)

When trial size (n) is 1, is called Bernoulli distribution and in
regression logistic regression.

Bounded Counts: Binomial
Example of binomial count with same φ but varying n:

n = 10 n = 30 n = 60 n = 100

0.0

0.1

0.2

3 6 9 15 20 25 30 35 40 45 50 60 70 80
Values of hypothetical success data (Y)

Pr
ob

ab
ili

ty
D

en
sit

y

As n increases, our estimate of φ becomes more accurate.

It may be tempting to transform counts into proportions: ie.
Y /n = Z , then use Z as response variable.

Don’t do this! (You lose information about the trial size, and
thus the innate variability, of the data).

Bounded Counts: Binomial

Remember that the standard error of an estimate is related to
the curvature of the likelihood surface. The flatter, the less
precise.

Visualise the estimate of probability of success φ with
increasing trial size n:

n = 10 n = 30 n = 60 n = 100

-2e+05

-1e+05

0e+00

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
Values of parameter φ

Lo
g

Li
ke

lih
oo

d

Regression with Non-normal Distributions

In regression/ANOVA/etc., we want to
relate a set of continous/categorical covariates to the mean of
the assumed distribution of our data.

Y ∼ Distribution(Parameters)
E[y] = β1x1 + β2x2 + ...+ βpxp

This involves solving for the regression coefficients β ...

But hard to do multivariate optimization on a bounded interval!

Easy to get values of β that lead to an E[Y] outside of the
bounds.

Normal approximation

Sometimes fitting a normal linear model to non-normal data,
provides ‘reasonable’ answers (normal approximation).

For example, when the rate parameter of a Poisson distribution
is large,

0.00

0.02

0.04

0.06

10 20 30 40 50
Value of data

Pr
ob

ab
ili

ty
D

en
sit

y

Distribution
Normal with µ, σ2 = 30
Poisson with λ = 30

Normal approximation

But often the normal approximation is rubbish, especially for
multi-parameter models (ie. multiple regression).

The normal PDF either fits the data poorly, or extends to
impossible values (ie. negative counts)

0.0

0.2

0.4

0.6

0 5 10
Value of data

Pr
ob

ab
ili

ty
D

en
sit

y

Distribution
Normal with µ, σ2 = 0.5
Poisson with λ = 0.5

Introducing the GLM

Generalized Linear Models (GLMs) allow non-normal
(bounded) data to be modelled as a linear function.

GLMs are a flexible extension of normal linear models... and
include normal linear models as a special case.

Developed in 70s/80s, these have quickly become the standard
mode of analysis for non-normal data, particularly counts.1

1McCullagh and Nelder Generalized Linear Models (1989) is the
definitive reference

Introducing the GLM

How does a GLM work?
I We assume the data follow a distribution.
I The GLM transforms the mean of the distribution to an

unbounded space on [−∞,∞].

For example with a log-transformation:
I logE[Y] goes from [0, ∞] to [−∞, ∞].
I If 0 < y < 1 then log y < 0,

If y > 1 then log y > 0.
I This transformation is termed a link function (linking the

linear model with the distribution of the data).
I The transformed mean is called the linear predictor.
I The raw data are not transformed.

Introducing the GLM
An intuition for the link function in a regression context:

Take a bounded, curvy line and make it straight:

0

5

10

-2 0 2 4
Covariate

D
at

a

-1

0

1

2

-2 0 2 4
Covariate

Li
ne

ar
Pr

ed
ic

to
r

GLM finds the slope and intercept of the straight line the best
fit the data when back-transformed to a curvy line.

Introducing the GLM

Basic recipe for a GLM:
1. Assume distribution for response (ie. Poisson)

Y ∼ Po(λ)

2. Choose link function appropriate for distribution
(ie. log for Poisson)

3. Take the expected value of the response distribution ...
transform ...
and write as linear model.

logE[Y] = log λ = β1x1 + β2x2 + ...+ βpxp

4. Optimize β to maximize likelihood of data.
R automates this except for the choice of distribution and link
function.

Introducing the GLM

The normal linear model is just a species case of the GLM.

The link function here is the ‘identity’ function (does nothing).

Y ∼ N (µ, σ)
E[Y] = µ = β1x1 + β2x2 + ...+ βpxp

Note that there are multiple potential link functions per
response distribution.

For example, a normal model with a log-link is just a particular
type of nonlinear model.

Interpreting the Link Function

All the regression coefficients, standard errors, etc. are on the
scale of the linear predictor (the transformed scale).

Not on the scale of the response (the bounded interval).

Therefore, the regression coefficients can no longer be
interpreted as a unit change in covariate ⇒ unit change in
response.

Regression coefficients must be interpreted with reference to the
link function.

This is a common source of confusion.

Interpreting the Link Function: log-link

The most common link for the Poisson distribution is the
log-link.

logE[Y] = β1x1

Exponentiate to put on the scale of the data:

E[Y] = eβ1x1 = eβ1x1 = (eβ1)x1

Therefore, for each unit change in x1 there is a multiplicative
change in E[Y] of eβ1 .

For example, if x1 = 3,

E[Y] = (eβ1)3 = eβ1 · eβ1 · eβ1

Interpreting the Link Function: log-link
Let’s visualise logE[Y] = β1x1 on the untransformed scale.

0 1 2 3
0

(eβ1)0 = 1

(eβ1)1

(eβ1)2

(eβ1)3

(eβ1)1 − 1

(eβ1)2 − (eβ1)1

(eβ1)3 − (eβ1)2

x

y

If increasing the value of x, the net increase in y depends on the
current value of y.

Interpreting the Link Function: logit-link

The default link for binomial models is the logit link.

E[Y] ∝ φ

logitφ = log φ

1− φ = β1x1

In binomial distribution φ is the probability of a binary event
(let’s say DYING).

Then 1− φ is the probability of LIVING.

The odds of DYING are φ
1−φ .

If the odds are 3, you/it/them/us are three times more likely
to DIE than to LIVE.

Interpreting the Link Function: logit-link

The logit transformation is the logged odds.

logit φ = log φ

1− φ

Thus the regression coefficient from a logit-link model is the
multiplicative increase in the odds of the event occurring.

For example, in:

φ

1− φ = exp{β1x1} = (eβ1)x1

A one-unit change in x1 causes a multiplicative increase of
exp{β1} in the odds of DYING.

Distributions, Links, and R

Canonical families (all using glm() in base R)

Family Links Data Type
Poisson log, sqrt, identity Counts

Binomial logit, probit, cloglog Successes/#Trials
Gamma inverse, log, identity Continuous positive

Inverse Gaussian inverse2, log, identity Continuous positive
Quasipoisson same as above Overdispersed counts

Quasibinomial same as above Overdispersed Successes/#Trials
Gaussian identity, log, sqrt Normal data

Non-canonical but very useful families

Family Links Data Type Function(Package)
Negative binomial log, sqrt, identity Counts glm.nb(MASS)

Beta logit, probit, cloglog Proportions betareg(betareg)

And there are many more. Default links in bold.

Goodness of Fit

The extension of sums of squares to maximum likelihood
framework is called deviance.

Deviance is used for optimization (fitting), assessing
goodness-of-fit, hypothesis testing. Defined as:

−2·(log likelihood of model)+
2 · (log likelihood of saturated model)

The saturated model is a model where the data is perfectly
explained–completely overfit–and gives a baseline likelihood.

Hence lower deviance is better.

Example data

Size-selectivity in black bears feeding on salmon (Cunningham
et al. American Naturalist 2013).

I Count variable: total number of salmon deaths
I Binomial variable: salmon deaths by bear or other?
I Covariates: Salmon size, sex, and year

Example data

kill_count <- read.csv("counts.csv")
str(kill_count, max.level = 1, give.attr = F,

width = 40)

'data.frame': 526 obs. of 4 variables:
$ year : int 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 ...
$ sex : Factor w/ 2 levels "f","m": 1 1 1 1 1 1 1 1 1 1 ...
$ salmon_length: int 390 400 410 420 430 440 450 460 470 480 ...
$ deaths : int 0 0 2 0 0 0 2 1 0 0 ...

kill_type <- read.csv("kills.csv")
str(kill_type, max.level = 1, give.attr = F,

width = 40)

'data.frame': 38 obs. of 3 variables:
$ death_by_other: int 0 1 2 12 23 86 144 265 213 185 ...
$ death_by_bear : int 1 0 0 1 1 7 14 15 19 19 ...
$ salmon_length : int 230 240 250 260 270 280 290 300 310 320 ...

Fitting GLMs in R

For Poisson model use:
glm(<formula>, <family>(<link>), <data>)

count_mod <- glm(deaths ~ year + sex + salmon_length,
poisson(log), kill_count)

Aside from the family-link argument, the syntax is identical to
lm(). The response must be counts (positive integers and
zeros).

head(kill_count$deaths)

[1] 0 0 2 0 0 0

Fitting GLMs in R
For a binomial model,

I If multiple counts in observation, formula must be:
cbind(<success counts>, <failure counts>) ∼ covariates

I If binary response (trial size is 1), formula must be:
<event> ∼ covariates
In this case <event> is binary (0/1).

death_mod <- glm(cbind(death_by_bear, death_by_other) ~
salmon_length, binomial(logit), kill_type)

structure of response
with(kill_type, cbind(death_by_bear, death_by_other))[1:3,

]

death_by_bear death_by_other
[1,] 1 0
[2,] 0 1
[3,] 0 2

Output from a GLM
Most summary/extractor functions from LMs work for GLMs.

summary(death_mod)

##
Call:
glm(formula = cbind(death_by_bear, death_by_other) ~ salmon_length,
family = binomial(logit), data = kill_type)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-7.319 -2.466 -0.437 1.533 4.740
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.606579 0.100539 -45.8 <2e-16 ***
salmon_length 0.009777 0.000232 42.2 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 2225.45 on 37 degrees of freedom
Residual deviance: 334.49 on 36 degrees of freedom
AIC: 539
##
Number of Fisher Scoring iterations: 4

Output from a GLM

Extractor functions ...

formula(<glm object>) : returns formula
resid(<glm object>, <type>) : returns residuals
fitted(<glm object>, <type>) : returns fitted values
coef(<glm object>) : returns estimated coefficients
vcov(<glm object>) : variance-covariance of coefficients
model.matrix(<glm object>) : matrix of predictors
logLik(<glm object>) : returns log-likelihood of model

<type> is used to specify the scale.

head(predict(count_mod, type = "response"))

1 2 3 4 5 6
6.242 6.155 6.069 5.984 5.901 5.818

Asymptopia

Output from GLMs (residuals, estimates, hypothesis tests, etc.)
behaves like normal linear models asymptotically.

Asymptotically means as the # of data points approaches ∞.

Realistically, at least 50-100 data points (depending on # of
zeros in data).

With small sample sizes, don’t expect GLMs to behave
like LMs.

With small sample sizes, we can use simulation to perform
diagnostics.

Diagnostics: Residuals

Residuals are the main tool for diagnostics.

Because the link function connects the model to the data, we
have many different types of residuals. The two most useful:

I Deviance residuals: the contribution of each data point
to the model’s deviance. Used for checking
heteroskedasticity, goodness of fit.

I Working residuals: the residuals used in the fitting
process, used for calculating partial residuals.

Use <type> in resid(<glm object>, <type>) to specify
working or deviance.

resid(count_mod, type = "deviance")
resid(count_mod, type = "working")

Diagnostics: Residuals

Deviance residuals are asymptotically normally distributed. Use
to check heteroskedasticity, normality, and linearity.

Use predict(<glm object>, type = "link") to get fitted
values on scale of link function.

head(predict(count_mod, type = "link"))

1 2 3 4 5 6
1.831 1.817 1.803 1.789 1.775 1.761

Diagnostics: Residuals

library(car)
par(mfrow = c(1, 2))
plot(predict(death_mod, type = "link"), resid(death_mod,

type = "deviance"), xlab = "Linear Predictor",
ylab = "Residuals")

qqPlot(resid(death_mod, type = "deviance"),
ylab = "Predicted Quantiles", xlab = "Theoretical Quantiles")

-2 -1 0 1

-6
-2

2

Linear Predictor

R
es

id
ua

ls

-2 -1 0 1 2

-6
-2

2

Theoretical Quantiles

Pr
ed

ic
te

d
Q

ua
nt

ile
s

Diagnostics: Residuals
Default plotting function for glm objects makes these plots foryou.
par(mfrow = c(2, 2), mar = c(2, 2, 2, 2))
plot(count_mod)

0.8 1.2 1.6

-5
0

5
10

Predicted values

Residuals vs Fitted
97 4080

-3 -1 1 2 3
0

5
10

Theoretical Quantiles

St
d.

de
vi

an
ce

re
sid

. Normal Q-Q
974080

0.8 1.2 1.6

0.
0

1.
5

3.
0

Scale-Location
97 4080

0.000 0.010 0.020

-5
5

15

St
d.

Pe
ar

so
n

re
sid

.

Cook’s distance

0.5
1

Residuals vs Leverage
4041

97

Diagnostics: Overdispersion

Overdispersion is the biggest problem with Poisson/Binomial
GLMs.

Both Poisson/Binomial have a fixed variance: the variance is
completely determined by the mean (also # trials for binomial).

This is a restrictive assumption. Most of the time,
biological data have extra-Poisson and extra-Binomial variation.

Unmeasured variables cause more variation than we would
expect under a ’pure’ process.

Diagnostics: Overdispersion

Why/how is this a problem?

If we assume there is less variation than there actually is, we
are overconfident in the accuracy our estimates.

In other words, the model is anti-conservative: it
underestimates standard errors ⇒

I P-values shrink,
I Type-I error inflates.

Diagnostics: Overdispersion

Visualize this with simulated data:

Overdispersed Pure

0.0

0.1

0.2

0 4 8 0 4 8
Values of Hypothetical Data

Pr
ob

ab
ili

ty
D

en
sit

y

Both are from binomial distributions with the same parameters,
but left is overdispersed. Intuitively: we should be less
confident in the mean estimate from the overdispersed data.

Diagnostics: Overdispersion
How to diagnose overdispersion?

In summary(<glm object>), look for ratio of residual
deviance to degrees freedom. The ideal ratio is 1.

summary(count_mod)

##
Call:
glm(formula = deaths ~ year + sex + salmon_length, family = poisson(log),
data = kill_count)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-3.533 -2.469 -1.378 0.448 10.211
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 78.910631 10.266234 7.69 1.5e-14 ***
year -0.038323 0.005111 -7.50 6.4e-14 ***
sexm -0.383196 0.045926 -8.34 < 2e-16 ***
salmon_length -0.001405 0.000383 -3.67 0.00024 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for poisson family taken to be 1)
##
Null deviance: 3671.5 on 525 degrees of freedom
Residual deviance: 3537.4 on 522 degrees of freedom
AIC: 4603
##
Number of Fisher Scoring iterations: 6

Diagnostics: Overdispersion

Can formally test as a χ2 statistic, against null hypothesis of no
overdispersion:
pchisq(count_mod$deviance, count_mod$df.residual,

lower = F)

[1] 0

Also notice that the estimated std. errors and p-values are
extremely low.
summary(count_mod)$coef

Estimate Std. Error z value Pr(>|z|)
(Intercept) 78.910631 10.266234 7.686 1.513e-14
year -0.038323 0.005111 -7.499 6.448e-14
sexm -0.383196 0.045926 -8.344 7.191e-17
salmon_length -0.001405 0.000383 -3.668 2.445e-04

Modelling overdispersion

Two common approaches: quasi-likelihood and mixtures.

The basic idea in both approaches is that we have two sources
of variance:

I Variance of the base distribution,
for example a Poisson distribution has variance equal to
the mean.

I And extra variance,
which we model with a separate parameter.

Functionally, approaches differ in how the variance increases
with the mean: linearly (quasi) or
asymptotically/linearly/exponentially (depending on mixture)

Modelling overdispersion: quasi-families

A quasi-family GLM has a variance that is a linear function of
the mean:

Var[Y] = θ · E[Y]

θ is the dispersion parameter.

So for a Poisson distribution, the variance still increases with
the mean but is not constrained to a 1-to-1 relationship.

I Pros: can be implemented directly in glm()
I Cons: likelihood becomes quasi-likelihood, AIC becomes

quasi-AIC, not implemented for more complex models (ie.
GLMMs)

Modelling overdispersion: quasi-families
Use family=quasi<whatever> to fit quasi-model.
count_mod_quasi <- glm(deaths ~ year + sex +

salmon_length, quasipoisson, kill_count)
summary(count_mod_quasi)

##
Call:
glm(formula = deaths ~ year + sex + salmon_length, family = quasipoisson,
data = kill_count)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-3.533 -2.469 -1.378 0.448 10.211
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 78.91063 30.70191 2.57 0.0104 *
year -0.03832 0.01528 -2.51 0.0125 *
sexm -0.38320 0.13734 -2.79 0.0055 **
salmon_length -0.00140 0.00115 -1.23 0.2206

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for quasipoisson family taken to be 8.944)
##
Null deviance: 3671.5 on 525 degrees of freedom
Residual deviance: 3537.4 on 522 degrees of freedom
AIC: NA
##
Number of Fisher Scoring iterations: 6

Note that std. errors, p-values are much more reasonable.

Modelling overdispersion: mixtures

In a mixture, add a ‘residual’ (data-point specific random
component) to the linear predictor.

Y ∼ Po(λ)
λ ∼ Distribution(Parameters)

Most familiar is the negative binomial for count data:

Y ∼ Po(λ)

E[Y] = λ ∼ Gamma(µ
2

θ
,
θ

µ
)

A mixture of Poisson and Gamma distributions. The data-point
specific random component is a Gamma variate with mean µ
and variance θ.

logµ = β1x1 + β2x2 + ...

Modelling overdispersion: mixtures
In R, use glm.nb() from MASS package. Works just like
glm() function, but don’t specify the family.
library(MASS)
count_mod_nb <- glm.nb(deaths ~ year + sex +

salmon_length, kill_count)
summary(count_mod_nb)

##
Call:
glm.nb(formula = deaths ~ year + sex + salmon_length, data = kill_count,
init.theta = 0.4742159769, link = log)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.584 -1.370 -0.561 0.163 2.453
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 69.34445 30.16887 2.30 0.0215 *
year -0.03337 0.01501 -2.22 0.0262 *
sexm -0.35303 0.13647 -2.59 0.0097 **
salmon_length -0.00226 0.00111 -2.03 0.0424 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for Negative Binomial(0.4742) family taken to be 1)
##
Null deviance: 563.47 on 525 degrees of freedom
Residual deviance: 548.53 on 522 degrees of freedom
AIC: 2428
##
Number of Fisher Scoring iterations: 1
##
##
Theta: 0.4742
Std. Err.: 0.0370
##
2 x log-likelihood: -2418.1530

Modelling overdispersion: mixtures

A normal mixture is one where we add a normally distributed
‘residual’ to the linear predictor:

Y ∼ Po(λ)
logE[Y] = log λ = β1x1 + β2x2 + ε

ε ∼ N (0, σ)

Here ε is the ‘residual’ and effectively accounts for variance
additonal to that of the Poisson.

This is called a Poisson log-normal mixture.

Modelling overdispersion: mixtures
Fit binomial-logit-normal and Poisson-log-normal mixtures as a
mixed-effects model (using glmer() in lme4)

library(lme4)
kill_count$id <- 1:nrow(kill_count)
glmer(deaths ~ scale(year) + sex + scale(salmon_length) +

(1 | id), family = poisson, data = kill_count)

Warning: Model failed to converge with max|grad| = 0.00585849 (tol = 0.001)

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: poisson (log)
Formula: deaths ~ scale(year) + sex + scale(salmon_length) + (1 | id)
Data: kill_count
AIC BIC logLik deviance df.resid
2437 2458 -1214 2427 521
Random effects:
Groups Name Std.Dev.
id (Intercept) 1.46
Number of obs: 526, groups: id, 526
Fixed Effects:
(Intercept) scale(year) sexm
0.4829 0.0411 -0.3429
scale(salmon_length)
0.0329

This syntax is new, and particular to mixed-effects models
(more in later weeks).

Diagnostics: simulation

The most flexible and powerful way to diagnose a model is
through simulation.

The basic idea:
1. We fit a model to our data.
2. We are unsure if the model fits our data, in some regard.
3. So we simulate datasets from the model fit.
4. These simulated datasets are by definition consistant with

the model.
5. We then compare our observed data to the simulated data

(using some statistic of interest).
6. If observation and simulation are consistant, then we

conclude that our data are consistant with the model.

Diagnostics: simulation

To simulate new datasets, use simulate(<model>,
<number of simulations>).

head(simulate(count_mod, 5))

sim_1 sim_2 sim_3 sim_4 sim_5
1 6 8 5 4 1
2 8 3 5 6 4
3 3 3 3 9 6
4 9 4 2 10 5
5 7 3 1 7 5
6 10 4 6 8 5

Rows are observations corresponding to original data, columns
are new datasets.

Diagnostics: simulation

An example: is the number of zeros in our data consistant with
a Poisson model?

The steps:
1. Count number of zeros in data
2. Fit Poisson model to data.
3. Simulate data from model many times.
4. For each simulated dataset, calculate number of zeros.
5. Build distribution of expected number of zeros from

simulations.
6. See if observed number of zeros is consistant with

simulated distribution.

Diagnostics: simulation

Example application:
I Count number of zeros in data

obs_zeros <- sum(kill_count$deaths == 0)

I Fit Poisson model to data:
count_mod <- glm(deaths ~ year + sex + salmon_length,

poisson(log), kill_count)

I Simulate data from model many times
new_dat <- simulate(count_mod, 1000) ## 1000 new datasets

I For each simulated dataset, calculate number of zeros.
sim_zeros <- apply(new_dat, 2, function(x) sum(x ==

0))

Diagnostics: simulation
I Build empirical distribution of # zeros expected under

model, and
I Compare observed # zeros (red) to expected # zeros (hist)

ggplot(data.frame(x = sim_zeros), aes(x = x)) +
geom_histogram(aes(y = ..density..)) +
geom_vline(xintercept = obs_zeros, col = "red",

size = 1, lty = 3) + theme_minimal() +
xlab("Number of zeros") + ylab("Probability")

0.00

0.02

0.04

0.06

0.08

0 50 100 150
Number of zeros

Pr
ob

ab
ili

ty

Diagnostics: simulation
How about with the negative binomial model?
new_dat_nb <- simulate(count_mod_nb, 1000)
sim_zeros_nb <- apply(new_dat_nb, 2, function(x) sum(x ==

0))
ggplot(data.frame(x = sim_zeros_nb), aes(x = x)) +

geom_histogram(aes(y = ..density..),
binwidth = 1) + geom_vline(xintercept = obs_zeros,

col = "red", size = 1, lty = 3) + theme_minimal() +
xlab("Number of zeros") + ylab("Probability")

0.00
0.01
0.02
0.03
0.04
0.05

160 180 200 220
Number of zeros

Pr
ob

ab
ili

ty

Likelihood Ratio Tests

A common tool for model selection/hypothesis testing in GLMs
(and many other models) is the likelihood ratio test.

Basic idea:
I improvement in fit = difference in deviance between models

= ∆D.
I increase in complexity = difference in number of

parameters between models = ∆P.
We ask: is improvement in fit greater than we would expect at
random, given increase in complexity?

Turns out the null distribution for ∆D is χ2 with degrees of
freedom ∆P.

Likelihood Ratio Tests: Application

In R, calculate likelihood ratio test with
anova(<model 1>, <model 2>)
full_model <- count_mod_nb
reduced_model <- update(full_model, . ~ . -

sex)
anova(full_model, reduced_model)

Likelihood ratio tests of Negative Binomial Models
##
Response: deaths
Model theta Resid. df 2 x log-lik. Test df
1 year + salmon_length 0.4658 523 -2424
2 year + sex + salmon_length 0.4742 522 -2418 1 vs 2 1
LR stat. Pr(Chi)
1
2 6.292 0.01213

Models should be nested (differing in single covariate).

Likelihood Ratio Tests: Application

Two approaches:
I Sequential: add parameters from null model
I Marginal: remove parameters from full model

Analogous to Type I and Type III sums of squares. Easy way
to do all marginal tests is with drop1():

drop1(full_model, test = "Chisq") ## gives all marginal likelihood ratio tests

Single term deletions
##
Model:
deaths ~ year + sex + salmon_length
Df Deviance AIC LRT Pr(>Chi)
<none> 549 2426
year 1 554 2430 5.77 0.016 *
sex 1 555 2430 6.35 0.012 *
salmon_length 1 550 2426 1.64 0.200

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Plotting binomial fits
GLM returns the predicted probabilities of success, not counts
of successes. To convey the sample size for each proportion, I
often use the size of the point.
preds <- predict(death_mod, type = "response") ## these are proportions! Not counts!
ggplot(data.frame(preds, kill_type), aes(x = salmon_length,

y = death_by_bear/(death_by_bear + death_by_other))) +
geom_point(aes(size = log(death_by_bear +

death_by_other)), alpha = 0.5) +
geom_line(aes(y = preds)) + theme_minimal() +
xlab("Salmon Length") + ylab("Probability Bear Kill") +
scale_size_continuous(name = "Log total deaths")

0.00

0.25

0.50

0.75

1.00

300 400 500 600
Salmon Length

Pr
ob

ab
ili

ty
Be

ar
K

ill

Log total deaths
0.0
2.5
5.0
7.5

Additional topics I recommend you look up:

I complete separation: when a covariate completely predicts
response, hell ensues

I zero-inflation: some additional process generates zeros in
our data, more than would be expected given distribution

I non-canonical families: beta (proportions), Weibull
(survival models), Pareto (truncated continuous data), t
(robust normal models), etc.

I multivariate extensions of GLMs: dirichlet, multinomial,
negative multinomial, etc.

