
Mixed-effect/Hierarchical Linear Models

September 26, 2014



Goals of this Lecture

The basic concept:
1. Why bother?
2. Distinction between random intercepts, random slopes,

grouping factors, variance components.
Some considerations in application of LMMs:
1. Diagnostics for linear mixed models, additional to those of

linear models
2. Issues with model selection and hypothesis testing in LMMs
3. The parametric bootstrap



Motivation

Common to collect data at different spatial, temporal scales.

I Within field sites/river systems/experimental units.
I On the same individual throughout time.
I Across multiple, nested scales: ie. individuals within sites

within regions

Mixed models (aka multilevel or heirarchical models):
explicitly model response variable at different scales, and also
heterogeneity in response at different scales.



Motivation: Statistical Dependence
With normal models, we always have observation specific
random variation (aka residuals or error). For observation i:

yi = α+ βxi + εi

Example with β = 0 (for clarity):
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Residuals follow a normal distribution with mean 0 and scale σ.

εi ∼ N (0, σ)



Motivation: Statistical Dependence

Could also consider random variation at more coarse scale
than single observations.

For example random variation among sites, within which
observations are collected.
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Colors indicate which observations belong to which site.



Motivation: Statistical Dependence

For this example, consider the site-level means.

Then define the observation-level random variation (residuals)
as deviations from these site-specific means:
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Motivation: Statistical Dependence

The site-level means are also a type of random error (just at a
different spatial scale):

They follow a normal distribution, with mean α and scale τ :
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Motivation: Statistical Dependence

The difference between the observation and the overall mean is
now the sum of two components.

Among-site variation and Within-site variation
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Total Variation
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Among-Site Variation
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Within-Site Variation

The among-site variation (the site level means), can be
modelled as a random effect.



Motivation: Statistical Dependence
The residuals in a model ignoring site means are not
independent.

Residuals from the same site are correlated, as they are
deviations from the same site-level mean.
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Two observations from the same site are closer in value than are
observations between sites.



Motivation: Pseudoreplication

Pseudoreplication is replication where some replicates are
not independent.

Examples:
I Observations from same individual.
I Observations from the same spatial location.
I Species that diverged (relatively) recently.

Treating pseudoreplicated data points as independent results in
overconfident inference:
we think we have more info then we actually have.

Mixed effects models appropriately account for a known
structure in observations while modelling an overall trend.



Motivation: Why use random effects?

Benefits of random effects:
I Account for pseudoreplication/non-independence of data
I Increase power by removing noise at various scales
I Estimate the variance of random effects

ie. additive genetic variance in trait among individuals
I Predict response for some level higher than the observation

ie. kriging over geographic space, longitudinal prediction of
health

I Shrinkage: levels of same grouping factor share information



Structure of Mixed Effects Models
Let i denote observation within site, and j denote site:
so that response[ij] = response[1, 3] is the first observation of
the third group.

response[ij] = overall mean + overall slope · covariate[ij]
+ random intercept[j] + random slope[j] · covariate[ij]
+ residual[ij]

In this equation:
I Fixed effects (first line):

intercept, regression coefficients are the ’overall’ mean and response;
not specific to any level of the grouping factor.

I Random effects (second line):
deviations from overall intercept and regression coefficients that are
specific to levels of the grouping factor; drawn from a distribution

I Residuals (third line):
Observation-level error; drawn from a distribution



Structure of Mixed Effects Models

Random effects have four main components:
I A grouping factor

ie. site, individual
I Random intercept

deviations from overall mean, for each site/individual/etc.
I Random slope

deviations in response to covariate from overall response,
for each site/individual/etc.

I Variance components
the variation of intercepts, slopes, controlling how much
they deviate from the overall mean.

R syntax (packages nlme / lme4):
<rest of formula> +
(1 + <covariate> | <grouping factor>)



Structure of Mixed Effects Models

The Grouping factor is a label which defines structure among
data points. Observed, not estimated.

I "Site1", "Site2", etc.
Do not include the grouping factor as both a random effect
and fixed effect.

Better to have more levels of the grouping factor, than more
replication within levels.

I Allows more accurate estimation of the between-group
variance.



Random intercepts and no random slope

Random intercepts are the simplest sort of random effect.

Think of these as residuals at a higher scale than the
observation:

I For example, site-level deviations from the overall mean.
If θj is site-level deviation from overall mean α:

yij = α+ βxij + θj + εij

= (α+ θj) + βxij + εij

y is observed value, β is overall slope for covariate x, ε are
residuals (observation-specific errors)

R formula syntax:
<covariate for overall slope> + (1|<grouping factor>)



Random intercepts and no random slope
A visual example: groups with different intercepts but same
overall slope (β = 1).
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Called random intercepts because they modify the overall
intercept (red line) for each level of the grouping factor (black
lines), and follow a probability distribution.



Random slopes and no random intercepts

Random slopes incorporate heterogeniety in a response to a
covariate, among levels of the grouping factor (ie. different
sites).

If our fixed effect slope is the overall slope, then the random
slopes are site-level deviations from this overall slope.

ηj is site-level deviation from overall slope β:

yij = α+ βxij + ηjxij + εij

= α+ (β + ηj)xij + εij

R formula syntax:
<covariate for overall slope> +
(0 + <covariate>|<grouping factor>)



Random slopes and no random intercepts

Visual example, where the overall slope is set to 0 (β = 0):
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Called random slopes because they modify the overall slope
(red line) for each level of the grouping factor (black lines).



Random slopes and no random intercepts
An example where the overall slope is non-zero (β = 1.23):
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It rarely (if ever) makes sense to include a random slope for a
covariate, without also including a fixed effect for that covariate.



Random slopes and random intercepts
Random slopes and intercepts can be combined:
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In this case we have deviations for the mean for each level of
the grouping factor, and also deviations for the slope.

R syntax: <covariate, fixed effect> + (1 + <covariate,
random effect>|<grouping factor>)



The Distinction Between Fixed and Random
Fixed effects describe the overall response.

I For example, the overall mean and overall regression slope.
I A common but inaccurate definition is that we care
about the point estimates of individual fixed effects
and not those of random effects.
For example, we might care about an estimated difference
among sexes, but not an estimated difference among sites.

I Sometimes we do care about the specific random effects:
for example in phylogenetic comparisons, tips and nodes
are random effects.

A more accurate definition:
I Random effects are drawn from some larger population, so

the values of individual random effects change with each
sample (ie. we sample different sites).

I Fixed effects are constant across the entire population, and
so do not change in value every time we sample.



The Distinction Between Fixed and Random
Example: repeated sampling of the same system.
In each sample, we randomly select three spatial
locations (sites) and collect 4 observations in each site.

Sample 1 Sample 2 Sample 3
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Note that random effects (site means) change with each random
sample, but the fixed mean (overall mean) does not.

Easier to understand with individuals (not sites): can’t usually
repeat experiment with same individuals.



Multiple random effects: crossed

We can have multiple grouping factors.
I For example, we might have site and species, or individual

and activity.
If these factors are not subsets of each other, then they are said
to be crossed.

I For example, Species A might occur in multiple sites.
Note that the levels of the grouping factors do not need to be
‘completely’ crossed (like in a two-way ANOVA)

I For example, Species A might be complete absent from
some sites.

R syntax:
<fixed effects> +
(<random intercept/slope>|<grouping factor 1>) +
(<random intercept/slope>|<grouping factor 2>)



Multiple Random Effects: Nested

If multiple grouping factors are subsets, they are said to be
nested.

For example:
I Site within region.
I Site 1 belongs to region B, Site 3 to region C.
I Thus a given site only occurs in a single region.

R syntax:
I If site labels are not unique, e.g. each region has sites

called "Site1" "Site2" "Site3", etc:
(1|Region/Site)

I If site labels are unique, e.g. "Region1.Site1",
"Region3.Site1", etc.:
(1|Region) + (1|Site)



Two Approaches to Estimation

Maximum likelihood (ML):
I Given data, finds value of parameters that maximize joint

probability of data.
I Results in biased estimates of variance components.
I Applicable to generalized linear mixed models.

Restricted Estimated Maximum Likelihood (REML):
I Likelihood with the fixed effects integrated out.
I Finds value of variance components that maximize the joint

probability of data over all possible values of fixed effects.
I Results in unbiased estimates of variance components.
I Not applicable to generalized linear mixed models.

The value of REML does not directly depend on values of fixed
effects.



Two Approaches to Estimation

Why use REML:
I Gives unbiased (more accurate) estimates of variance

components.
Why use ML in place of REML:

I REML cannot be used to select among models with
differing fixed effects.

I This restriction includes AIC, likelihood-ratio-test model
selection.

I ML becomes unbiased at large sample sizes.
If you want to select among fixed effects, use ML.

However, REML can be used to select among different random
effects structures, given that the fixed effects are held
constant.



Bats

Frick et al. (2012) Insectivorous bat pollinates columnar cactus
more effectively per visit than specialized nectar bat. Am. Nat.

I Response: log pollen deposition
I Covariates: bat species, minutes since sunset
I Random effects (grouping factors): site, individual cactus

Question: do bat species deposit different amounts of pollen?



Bats

bats <- read.csv("bats.csv")
str(bats)

## 'data.frame': 89 obs. of 5 variables:
## $ SiteID : Factor w/ 5 levels "EB03","LT01",..: 2 1 5 5 5 5 5 5 5 5 ...
## $ CactusID : Factor w/ 44 levels "PPS02","PPS13A",..: 1 44 7 7 5 5 3 4 9 8 ...
## $ Species : Factor w/ 2 levels "ANPA","LEPTO": 2 1 1 1 1 1 1 1 1 1 ...
## $ MinSunset: int 249 75 58 62 67 93 196 200 54 63 ...
## $ Pollen : int 4000 1287 687 1204 981 1550 147 224 83 840 ...

bats$Pollen <- log(bats$Pollen)



Fitting Mixed Models
Two popular packages (nlme, lme4) for fitting mixed-effects
models.

Why use nlme?
I correlated, heteroskedastic errors
I nonlinear mixed-effects models with normal errors
I more built-in options for plotting stuff by groups

Why use lme4?
I much faster, cutting-edge, under active development
I allows random effects variance to go to zero (drop out of

model)
I easily use multiple random effects, crossed & nested
I nicer syntax, in general less cumbersome to extract things

from models
I generalized linear mixed models



Fitting Mixed Models

Using lmer(<formula>, <data>):

library(lme4)
# model with nested random intercepts
ranint_model <- lmer(Pollen ~ Species + MinSunset +

(1 | SiteID/CactusID), data = bats)
# model with random slopes for Site
bats$UniqueCactusID <- as.factor(paste0(bats$SiteID,

bats$CactusID)) #make sure each Cactus has unique ID
ranslope_model <- lmer(Pollen ~ Species +

MinSunset + (MinSunset | SiteID) + (1 |
UniqueCactusID), data = bats)

## Warning: Model failed to converge with max|grad|
= 0.550441 (tol = 0.002)



Model summary
summary(ranslope_model)

## Linear mixed model fit by REML ['lmerMod']
## Formula:
## Pollen ~ Species + MinSunset + (MinSunset | SiteID) + (1 | UniqueCactusID)
## Data: bats
##
## REML criterion at convergence: 388.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.289 -0.600 0.127 0.563 2.031
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## UniqueCactusID (Intercept) 0.870527 0.9330
## SiteID (Intercept) 3.962715 1.9907
## MinSunset 0.000347 0.0186 -1.00
## Residual 3.270622 1.8085
## Number of obs: 89, groups: UniqueCactusID, 46; SiteID, 5
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.417968 1.162070 5.52
## SpeciesLEPTO -1.355236 0.550246 -2.46
## MinSunset -0.000945 0.010323 -0.09
##
## Correlation of Fixed Effects:
## (Intr) SLEPTO
## SpecisLEPTO 0.011
## MinSunset -0.964 -0.142



Model summary

resid(), fitted(), AIC(), model.matrix(), etc. all work as
for GLMs/LMs.

Some new extractor functions:
I fixef(model): returns estimated fixed effects
I ranef(model): returns estimated random effects point

estimates
I VarCorr(model): returns random effects variances
I getME(model, <whatever you want>):

returns all sorts of nifty things, see ?getME



Model summary

ranef(<lmer object>) returns point estimates of random
effects (BLUPs) as list:

str(ranef(ranslope_model))

## List of 2
## $ UniqueCactusID:'data.frame': 46 obs. of 1 variable:
## ..$ (Intercept): num [1:46] 0.23555 0.13387 0.0323 0.29986 0.00282 ...
## $ SiteID :'data.frame': 5 obs. of 2 variables:
## ..$ (Intercept): num [1:5] 0.591 -1.938 -0.815 2.32 -0.158
## ..$ MinSunset : num [1:5] -0.00554 0.01814 0.00763 -0.02172 0.00148
## - attr(*, "class")= chr "ranef.mer"

head(ranef(ranslope_model)$SiteID)

## (Intercept) MinSunset
## EB03 0.5914 -0.005536
## LT01 -1.9376 0.018137
## LT01B -0.8154 0.007633
## LT03 2.3199 -0.021716
## PB01 -0.1583 0.001482



Convergence

The model optimisation converges when it reaches maximum
likelihood (or REML) estimates for the parameters.

Why might a model fail to converge?
I Collinearity among covariates.

Remove covariate, use PCA to reduce dimension.
I Very different scales among covariates.

Scale variables with scale(<covariate>)
I Correlation among random effects.

Center variables ⇒ reduce correlation between intercept
and mean, simplify random effects structure.

I Not enough iterations of optimisation algorithm.
See ?lmerControl



Convergence
Current lme4 (1.1-6 or so) has new convergence checks, a few of
which are false positives.

Distinguish between errors and warnings:
I An error will cause the model fitting to fail, returning

nothing.
I A warning tells you something might be up, and returns

the (potentially flawed) fit.
Warnings to take seriously:

I False (singular) convergence
I Model nearly unidentifiable

Warnings that are often false positives:
I Model failed to converge with max grad ...

See this SO post 1 for more info.
1http://stackoverflow.com/questions/21344555/convergence-error-for-

development-version-of-lme4



Convergence
Examples of a convergence error and warning:

fails_with_error <- lmer(Pollen ~ MinSunset +
(MinSunset | SiteID/CactusID), data = bats)

## Error: number of observations (=89) <= number of
random effects (=92) for term (MinSunset |
CactusID:SiteID); the random-effects parameters and the
residual variance (or scale parameter) are probably
unidentifiable

# create screwy variable
bats$fckd_covariate <- (bats$MinSunset +

rnorm(bats$MinSunset, 0, 3)) * 1e+05
works_with_warnings <- lmer(Pollen ~ MinSunset +

fckd_covariate + (1 | SiteID), data = bats)

## Warning: Some predictor variables are on very
different scales: consider rescaling



Random Effects Correlations

print(ranslope_model)

## Linear mixed model fit by REML ['lmerMod']
## Formula:
## Pollen ~ Species + MinSunset + (MinSunset | SiteID) + (1 | UniqueCactusID)
## Data: bats
## REML criterion at convergence: 388.7
## Random effects:
## Groups Name Std.Dev. Corr
## UniqueCactusID (Intercept) 0.9330
## SiteID (Intercept) 1.9907
## MinSunset 0.0186 -1.00
## Residual 1.8085
## Number of obs: 89, groups: UniqueCactusID, 46; SiteID, 5
## Fixed Effects:
## (Intercept) SpeciesLEPTO MinSunset
## 6.417968 -1.355236 -0.000945



Random Effects Correlations
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What does the high (> 0.9) correlation between
SiteID:(Intercept) and SiteID:MinSunset indicate?

I Groups with high means have large slopes
I Indicates there is too little information to independently

estimate mean and slope
I A bad sign–can result in overfitting, bias of fixed effects

estimates.
Centering continuous variables may reduce this correlation, but
probably best to simplify model.



Normality of Random Effects
All assumptions from linear models apply. (residual normality,
homoskedasticity, linearity, independence).

A new assumption for linear mixed models: the random effects
estimates (intercepts/slopes) are normally distributed.
library(car)
par(mfrow = c(1, 3))
qqPlot(resid(ranslope_model), main = "Residuals",

xlab = "Theoretical Q", ylab = "Observed Q")
qqPlot(ranef(ranslope_model)[["SiteID"]][,

1], main = "Ran Intercept (Site)", xlab = "Theoretical Q",
ylab = "Observed Q")

qqPlot(ranef(ranslope_model)[["SiteID"]][,
2], main = "Ran Slope (Site)", xlab = "Theoretical Q",
ylab = "Observed Q")
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Prediction

Often we want to predict response for certain levels of random
effect.

The predict() method for lmer objects:
predict(<model object>, <new data>, re.form =
<formula>)

Omitting <new data> gives predictions for each data point.

Argument re.form specifies which random effects to predict
for:

I if re.form = 0, then ’overall’ predictions are generated.
I if re.form = (MinSunset|SiteID), then predictions for

each site are generated.



Prediction

Examples:

# overall predictions
bats$preds_overall <- predict(ranslope_model,

re.form = ~0)
head(bats$preds_overall)

## [1] 4.827 6.347 6.363 6.359 6.355 6.330

# site-level predictions
bats$preds_site <- predict(ranslope_model,

re.form = ~(MinSunset | SiteID))
head(bats$preds_site)

## [1] 7.406 6.523 6.291 6.293 6.296 6.310



Prediction

To visualize: plot predicted, observed values in panels for each
level of grouping effect.
ggplot(bats, aes(x = MinSunset, y = Pollen,

color = Species)) + geom_point() + geom_line(aes(y = preds_site)) +
facet_grid(~SiteID) + theme_minimal() +
theme(panel.border = element_rect(fill = NA))
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Residual Degrees Freedom and Hypothesis Tests

In a mixed model, the residual degrees freedom are unspecified.

Why?
I How many data points do we have in a pseudoreplicated

dataset?
I With 5 sites and 89 observations:

do we have 5 or 89 data points?
I The effective number of data points is somewhere

inbetween these two extremes.
Consequences:

I Residual DF neccessary for T-tests, F-tests.
I Therefore, no null hypothesis tests ⇒ no p-values in

output.



Residual Degrees Freedom and Hypothesis Tests

See ?pvalues for more information.

Three suggested solutions:
I Use approximation to Residual DF
lmerTest package.

I Use likelihood ratio tests
anova(<model 1>, <model 2>)

I Use parametric bootstrap
bootMer() function.



Approximation to Residual Degrees Freedom

Two approximations to the residual DF are common in the
literature: Satterthwaite and Kenward-Roger.

Both use the random effect variance (ie. between-site variance)
to estimate how close the effective degrees freedom is to the #
of grouping factors or the # observations.

The greater the between-site variance (ie. as sites are more
distinct), the more correlation among data points from the
same site.

Both are implemented in the lmerTest package.

lmerTest modifies the lmer() function directly to provide
p-values for T-statistics, and implements p-values for F-tests in
anova(<lmer object>).



Approximation to Residual Degrees Freedom

library(lmerTest)
new_ranslope_model <- lmer(Pollen ~ Species +

MinSunset + (MinSunset | SiteID) + (1 |
UniqueCactusID), data = bats)

## Warning: Model failed to converge with max|grad| =
0.550441 (tol = 0.002)

summary(new_ranslope_model)$coef

## Warning: Model failed to converge with max|grad| =
0.550441 (tol = 0.002)
## Warning: Model failed to converge with max|grad| =
0.550441 (tol = 0.002)

## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 6.4179675 1.16207 2.782 5.52287 0.01423
## SpeciesLEPTO -1.3552359 0.55025 70.177 -2.46297 0.01624
## MinSunset -0.0009454 0.01032 3.521 -0.09158 0.93200



Approximation to Residual Degrees Freedom
Syntax for F-tests:
anova(<lmer object>, type = <1 or 3>,
ddf=<approximation type>)

anova(new_ranslope_model, type = 1, ddf = "Satterthwaite")

## Warning: Model failed to converge with max|grad| =
0.541634 (tol = 0.002)
## Warning: Model failed to converge with max|grad| =
0.541634 (tol = 0.002)

## Analysis of Variance Table of type 1 with Satterthwaite
## approximation for degrees of freedom
## Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
## Species 20.47 20.47 1 11.40 4.01 0.069 .
## MinSunset 0.03 0.03 1 3.52 0.01 0.932
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(new_ranslope_model, type = 3, ddf = "Kenward-Roger")

## Warning: Model failed to converge with max|grad| =
0.541634 (tol = 0.002)
## Warning: Model failed to converge with max|grad| =
0.541634 (tol = 0.002)

## Analysis of Variance Table of type 3 with Kenward-Roger
## approximation for degrees of freedom
## Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
## Species 20.47 20.47 1 74.5 5.34 0.024 *
## MinSunset 0.03 0.03 1 3.2 0.01 0.939
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Likelihood Ratio Tests

A common tool for model selection/hypothesis testing is the
likelihood ratio test.

Basic idea:
I improvement in fit = difference in deviance between

models = ∆D.
I increase in complexity = difference in number of

parameters between models = ∆P.
We ask: is improvement in fit greater than we would expect at
random, given increase in complexity?

The null distribution for ∆D is χ2 with degrees of freedom ∆P.
(ie. this is the improvement in fit which could happen by
chance, when adding an arbitrary covariate to the model.)



Likelihood Ratio Tests: Application
In R, calculate likelihood ratio test with
anova(<model 1>, <model 2>)

full_model <- update(ranslope_model, REML = F)

## Warning: Model failed to converge with max|grad| = 0.860524 (tol = 0.002)

reduced_model <- update(full_model, . ~ . -
Species)

## Warning: Model failed to converge with max|grad| = 0.565527 (tol = 0.002)

anova(full_model, reduced_model)

## Data: bats
## Models:
## ..1: Pollen ~ MinSunset + (MinSunset | SiteID) + (1 | UniqueCactusID)
## object: Pollen ~ Species + MinSunset + (MinSunset | SiteID) + (1 | UniqueCactusID)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## ..1 7 400 418 -193 386
## object 8 397 417 -190 381 5.35 1 0.021 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Models should be nested (differing in single covariate).



Likelihood Ratio Tests: Application

Two approaches:
I Sequential: add parameters from null model
I Marginal: remove parameters from full model

Analogous to Type I and Type III sums of squares. Easy way
to do all marginal tests is with drop1():

drop1(full_model, test = "Chisq") ## gives all marginal likelihood ratio tests

## Warning: Model failed to converge with max|grad| = 0.565527 (tol = 0.002)
## Warning: Model failed to converge with max|grad| = 0.890189 (tol = 0.002)

## Single term deletions
##
## Model:
## Pollen ~ Species + MinSunset + (MinSunset | SiteID) + (1 | UniqueCactusID)
## Df AIC LRT Pr(Chi)
## <none> 397
## Species 1 400 5.35 0.021 *
## MinSunset 1 395 0.01 0.911
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Hypothesis Testing: Considerations with REML

As mentioned previously, restricted estimated maximum
likelihood (REML) does not directly depend on the fixed effects.

This makes REML inappropriate for likelihood ratio tests
(and AIC) when:

I select models with differing fixed effects.
In lmer() the argument REML = F fits models with
maximum likelihood.

With models fit by ML, it’s possible to compare fixed effects as
long as random effects structures are identical.

Many functions will automatically refit the model with ML if
needed, but you should always check.



Hypothesis Testing: Considerations with REML
REML works for F-tests, which rely on variance components to
calculate the test statistic.

REML can be used with likelihood ratio tests and AIC, when
selecting among random effects structures. In this case, the
same fixed effect structure must be used.
model1 <- lmer(Pollen ~ Species + MinSunset +

(MinSunset | SiteID) + (1 | UniqueCactusID),
data = bats)

## Warning: Model failed to converge with max|grad| = 0.550441 (tol = 0.002)

model2 <- lmer(Pollen ~ Species + MinSunset +
(MinSunset | SiteID), data = bats)

## Warning: Model failed to converge with max|grad| = 1.02204 (tol = 0.002)

anova(model1, model2)

## Data: bats
## Models:
## ..1: Pollen ~ Species + MinSunset + (MinSunset | SiteID)
## object: Pollen ~ Species + MinSunset + (MinSunset | SiteID) + (1 | UniqueCactusID)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## ..1 7 396 414 -191 382
## object 8 397 417 -190 381 1.44 1 0.23



Parametric Bootstrap

The parametric bootstrap is the most accurate, and most
flexible option for hypothesis testing.

I Does not rely on approximations or additional assumptions.
I Can generate confidence intervals for any statistic derived

from a model.
I However, may be infeasible for huge datasets (millions of

observations).
The core idea is to use brute-force simulation to generate the
sampling distribution for a statistic of interest, given a
statistical model.



Parametric Bootstrap: Confidence Intervals

Basic recipe for confidence intervals of a model statistic:
1. Fit model of interest to data.
2. Simulate data from model, many times.
3. Refit the model to each simulated dataset.
4. Calculate the statistic of interest from each simulated

model fit.
5. Construct distribution from simulated statistic, calculate

confidence intervals, etc.
The PB works because the simulated datasets mimic data
where the model is absolute truth.

With enough datasets, can estimate the sampling distribution of
any statistic we wish (even those that don’t have a closed form).



Parametric Bootstrap: Confidence Intervals

The bootMer() function automates steps 2-5.

First, we need to define a function to extract the statistic of
interest from the model as a vector.

As an example, consider a function that extracts the point
estimates for the site-level random intercepts.

getRE <- function(model) {
return(as.vector(ranef(model)$SiteID[, 1]))

}



Parametric Bootstrap: Confidence Intervals

Then run:

bootMer(<lmer object>, <function>, nsim =
<number sims>, type = "parametric", use.u = T)

The argument use.u = T is necessary if interested in specific
random effects (otherwise, it’ll simulate new random effects).

Generating CI’s for individual random effects is useful
application of PB, because the usual approximated confidence
intervals are often very inaccurate.



Parametric Bootstrap: Confidence Intervals
Use boot.ci(<bootMer object>, <conf>, <type>,
<index>) to generate various sorts of bootstrap confidence
intervals.

Here <conf> is the confidence level (ie. 0.95), <index> is the
index of the statistic to calculate the interval for (we have 5
sites, so could be from 1 to 5).

library(boot)
re_boots <- bootMer(ranslope_model, getRE,

nsim = 99, type = "parametric", use.u = T)
boot.ci(re_boots, conf = 0.9, "norm", 1)

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 99 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = re_boots, conf = 0.9, type = "norm", index = 1)
##
## Intervals :
## Level Normal
## 90% (-0.9621, 3.1000 )
## Calculations and Intervals on Original Scale



Parametric Bootstrap: Confidence Intervals
ggplot(melt(re_boots$t), aes(x = factor(X2),

y = value)) + geom_boxplot() + geom_hline(yintercept = 0,
color = "red") + ylab("Sim. Random Intercepts") +
xlab("Site") + theme_minimal() + theme(axis.title = element_text(size = 8),
axis.text = element_text(size = 4), axis.ticks.length = unit(0.05,

"cm"))
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Note that if the model fits your data poorly, the results of the
PB will be rubbish (the same goes for any test from a badly
fitting model).



Parametric Bootstrap: Confidence Intervals
You can use the parametric bootstrap for many, many tasks:

I Calculate confidence intervals of fixed effects.
I Calculate confidence intervals of random effects.
I Calculate confidence intervals of variance components.
I Calculate prediction intervals/std. errors of predictions.
I Calculate mean and confidence intervals of any derived

function of model parameters.
I A bootstrapped version of the likelihood ratio test, where

the χ2 distribution is replaced with a simulated, empirical
distribution.

I Bootstrapped AIC model selection, and model averaged
parameters.

Very useful for generalized linear mixed models, where
approximations and asymptotic assumptions often fail
miserably.



Advanced topics:

I categorical random slopes (called random coefficients)
I generalized linear mixed models

More of the same.
I spatial/phylogenetic random effects

Assume a distance-based correlation structure among
random effects.

I Bayesian approaches to GLMMs
Fit models of arbitrary complexity, with missing data, with
various distributions.



If time permits...

MuMIn is a useful package for information-theoretic model
selection/averaging.

AIC is most commonly used. Note that AICc cannot be used
with mixed models, as AICc formula incorporates residual
degrees freedom.
Basic Recipe:

I Fit models, saving as objects in a list
I Use model.sel() on list for model selection table
I Use model.avg() on list for model averaged coefficients.


