
Goals

I Joint, conditional, and marginal probability
I Bayes’ rule and Bayesian updating
I Markov Chain Monte Carlo

These three topics are essential to understanding modern
Bayesian statistics.



Goals

Advantages of Bayesian approach:
I Incorporates prior information in a formal, mathematically

sound framework
I Fits arbitrarily complex models, especially multilevel

models
I Works directly with probabilities, straightforward

interpretation



Probability Review
A probability density function (PDF) describes
distribution of a random variable (RV).
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A PDF is parametric if its shape is governed by parameters
(ie. mean, scale, shape, etc.) Notation, ie. normal PDF:

Pr(X) = 1
2σ
√
π
exp{−(X − µ)2

2σ2 }



Probability Review

The PDF gives the probability that random variable X falls
within an infinitesimal interval: [X, X + really small number].

Hence, the PDF gives the probabilities of all mutually exclusive
outcomes of random event X.

The sum of the probabilities of all mutually exclusive outcomes
must equal 1. This is the area under the PDF curve:

The integral of any PDF must equal 1.



Joint Probability Distribution

With >1 RVs, we have a joint distribution function.

For 2 RVs, the joint distribution gives the probability of a pair
of values (X, Y).
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Notation: Pr(X ,Y )



Joint Probability Distribution
Sample data from this bivariate density ...
and we get more points where density is highest.
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There is dependency between X and Y in this joint
distribution:

Pr(large X , large Y ) > Pr(small X , large Y )



Joint Probability Distribution
Contrast this with an indepedent X and Y .
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The probability of two independent events is the product of
the probabilities of each of these events:

Pr(X ,Y ) = Pr(X) · Pr(Y ) if X ⊥⊥ Y



Conditional Probability Distribution
To characterize depedency, use the distribution of X conditional
on a value of Y .

This is the probability that X takes on a value, given that Y
has already taken on a value (Y = y).
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This is proportional to a slice of the joint density where Y
equals a fixed value.



Conditional Probability Distribution

And vis versa: a slice where Y is conditional on a fixed value of
X .
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Notation: Pr(X |Y = y) or Pr(X |Y )



Conditional Probability Distribution

When joint distribution is dependent, Pr(Y |X) changes
with values of X .
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Conditional Probability Distribution

When joint distribution is independent, the Pr(X|Y) will be
invariant as Y changes.
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Hence Pr(Y |X) = Pr(Y ) if Y ⊥⊥ X .



Marginal Probability Distribution

In our joint density plot, the marginal probability is the
probability density on the ‘edges’.
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Identities

For X , the marginal distribution is constructed by summing all
the ‘slices’ of the joint density at all values of Y .

Thus the marginal distribution is an integral:

Pr(X) =
∫

Pr(X |Y )Pr(Y )dY

The probability that X equals a value conditinal on a value of
Y , averaged across the probability density of Y .



Identities

The joint distribution gives the probability that X equals a
value (X = x) and Y equals a value (Y = y):

I if X is independent from Y :

Pr(X ,Y ) = Pr(X) · Pr(Y )

I if X is dependent on Y :

Pr(X ,Y ) = Pr(X |Y ) · Pr(Y )

The joint probablity of (X = x,Y = y) can be understood as
the probability that two events happen simultaneously:
(Y = y) and (X = x).



Identities

The conditional distribution is the probability density of X
given that Y already equals a value.

Think of this as the probability of values of X , given that
Y = y already happened.

Pr(X |Y = y) = Pr(X ,Y )/Pr(Y )

If X is independent from Y :

Pr(X |Y = y) = Pr(X)Pr(Y )/Pr(Y ) = Pr(X)

Conditional, marginal, and joint densities all integrate to 1.



Parameters and Data

Broadly, our goal in statistics is to make inference on the
underlying process (parameters) which could have generated
our observed data.

Example: we collect data on the growth rate, of a plant
species transplanted to a novel environment.

I The observed growth rates of individual seedlings are data.
I The average growth rate is an unknown parameter to

estimate.
What we’re interested in: the probability distribution of the
average growth rate conditional on the data.

Pr(average growth rate|observed growth rates)



Parameters and Data
If assume a probability distribution for our data (say a normal
distribution), we can easily calculate:

Pr(observed growth rates|average growth rate)

For all potential values of the average growth rate.
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This is called the likelihood of the parameter, given the
data.



Parameters and Data

Likelihood is a function of probability, but is not itself a
probability. The distinction is that the data are treated as a
random variable, while the parameter is not.

We care about likelihood insofar as it informs us about the
probability of various values of a parameter.

We are not interested in the probability of the data
given various values of the parameter.
(ie. how probable is an observed growth rate of 3, given a
average growth rate of µ?).

We are interested in the probability of the parameter
given our data
(ie. how probable is an average growth rate of µ, given that we
observed a growth rate of 3?).



Bayes Rule
Bayes’ rule takes a conditional probability and inverts it.

Pr(Y |X)⇒ Pr(X |Y )

Useful to convert Pr(data|parameters) into
Pr(parameters|data).

Bayes’ rule (in the context of data):

Pr(parameter|data) = Pr(data|parameter)Pr(parameter)
Pr(data)

i.e., if we observe a single growth rate of y = 3, the probability
of an average growth rate of µ = 10 conditional on this data:

I the marginal probability that the average growth rate is 10,
I the conditional probability that observed growth rate is 3,

given that the average growth rate is 10.
I inverse of the marginal probability that the observed

growth rate is 3.



Bayes Rule

Pr(parameter|data) = Pr(data|parameter)Pr(parameter)
Pr(data)

Terminology:
I Pr(parameter|data) is the posterior.
I Pr(data|parameter) is the likelihood.
I Pr(parameter) is the prior.
I Pr(data) is the normalizing constant.



Bayes Rule: Numerator

Pr(parameter|data) ∝ Pr(data|parameter)Pr(parameter)

The prior represents our previous knowledge (or previous
belief) about the feasible values of a parameter.

The probability of the data conditional on the parameter (the
likelihood), is our evidence for various values of the parameter.

Think of the likelihood as a weight:
the posterior is proportional our prior belief is weighted by our
evidence, for any given value of the parameter.



Bayes Rule: Numerator

For example,

We assign a high prior probability that the average growth rate
(µ) = 10:

Pr(µ = 10) = 0.27

If the observed growth rate (y) = 3 is improbable, given µ = 10:

Pr(y = 3|µ = 10) = 0.000004

Then the posterior probability of µ = 10 is very low relative to
the prior:

Pr(µ = 10|y = 3) = 0.0000007

Note that the posterior is not equal to the product of likelihood
and prior: this is because of the denominator in Bayes’ rule.



Bayes Rule: Numerator
With a different prior:

We assign a high prior probability that our average growth rate
µ = 2.7:

Pr(µ = 2.7) = 0.27

The observed growth rate y = 3 is quite probable given this
average growth rate:

Pr(y = 3|µ = 2.7) = 0.26

In this case the posterior probability of µ = 2.7 is high relative
to the prior:

Pr(µ = 2.7|y = 3) = 0.66

The more data we have, the stronger the weight.
The greater the uncertainty (variance) in the prior, the weaker
the prior.



Bayes Rule: Numerator
The likelihood (information in the data) thus ‘updates’ the
prior information: this is Bayesian Updating.

Imagine we have a single observation (y = 3), from a
distribution with a known variance.
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The probability of the data point given various values of the
mean µ, is shown in blue. This is the likelihood.



Bayes Rule: Numerator

If we set a prior that represents an equivalent amount of
information:

µ ∼ N (0, 1)
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This prior probability of the mean, is shown in red.



Bayes Rule: Numerator

The posterior (purple) is intermediate between the two.
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Thus, the data update the prior.



Bayes Rule: Numerator

Same likelihood with an uninformative prior on the mean (µ):

µ ∼ N (0, 100)

0.00

0.25

0.50

0.75

1.00

-5.0 -2.5 0.0 2.5 5.0 7.5
Value of Mean

Pr
ob

ab
ili

ty
D

en
sit

y

Again, the prior probability is in red. Notice it is practically
uniform.



Bayes Rule: Numerator

The resulting posterior is identical to the likelihood.
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As the variance of the prior increases, it loses strength to
influence the posterior.



Bayes Rule: Denominator

Pr(parameter|data) = Pr(data|parameter)Pr(parameter)
Pr(data)

What is the denominator in Bayes’ rule? This where the
calculus voodoo comes into play.

Using our definition of marginal probability:

Pr(data) =
∫

Pr(data|parameter)Pr(parameter)dparameter

The denominator is just the integral of the numerator!



Bayes Rule: Denominator

How does this make sense in any way shape or form?

The numerator is not a valid probability distribution: it is a
product of probability distributions.

The numerator does not integrate to 1.

The numerator is a function of the parameters. Dividing by the
integral normalizes this function, to integrate to 1.

The sole purpose of the denominator in Bayes’ rule is to make
the product of the likelihood and prior, into a valid probability
distribution.

We don’t care about the value of the denominator, but we need
to calculate it.



Markov Chain Monte Carlo

Most of the time, the denominator is difficult to calculate.

This is because it is a high-dimensional integral; for example in
single-level hierarchical normal model model:

Pr(µ, θj , τ
2, σ2|yij) = Pr(yij |θj , σ

2)Pr(θj |µ, τ2)Pr(µ, τ2, σ2)
Pr(yij)

The denominator in integral form is:

Pr(µ, θj ,τ
2, σ2|yij) =∫
θj

∫
µ

∫
τ2

∫
σ2

Pr(yij |θj , σ
2)Pr(θj |µ, τ2)Pr(µ, τ2, σ2)dσ2dτ2dµdθj



Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a clever numerical
technique to simulate from the posterior distribution, without
explicitly solving this integral.

To do so, we only need to know the conditional distributions for
each parameter (which are unidimensional).



Markov Chain Monte Carlo
An example: have 34 datapoints we assume a normal
distribution, and want to estimate the mean and variance.

In this (example) case, we have an analytical solution to the
posterior:
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But we’ll run an MCMC algorithm anyway to see how it works.



Markov Chain Monte Carlo: Initial Values
First we pick a reasonable starting value (µ = 4.8, σ2 = 2.5).
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Markov Chain Monte Carlo: Conditional Distribution of
Variance

Figure out conditional distribution for the variance (or
proportional function), given the starting value of the mean.
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Markov Chain Monte Carlo: Update Variance

Simulate a new value of the variance from this conditional
distribution.
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Markov Chain Monte Carlo: Conditional Distribution of
Mean

Figure out the conditional distribution for the mean, given the
new value of the variance.
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Markov Chain Monte Carlo: Update Mean

Simulate a new value of the mean from this conditional
distribution.
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Markov Chain Monte Carlo: Iteration 1
Now we have a new sample from the joint posterior
distribution.
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Markov Chain Monte Carlo: Conditional Distribution of
Variance

Repeat ...
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Markov Chain Monte Carlo: Update Variance
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Markov Chain Monte Carlo: Conditional Distribution of
Mean
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Markov Chain Monte Carlo: Update Mean
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Markov Chain Monte Carlo: Iteration 2
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Markov Chain Monte Carlo: Conditional Distribution of
Variance

Repeat ...
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Markov Chain Monte Carlo: Update Variance
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Markov Chain Monte Carlo: Conditional Distribution of
Mean
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Markov Chain Monte Carlo: Update Mean
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Markov Chain Monte Carlo: Iteration 3
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Markov Chain Monte Carlo: Result
Do this many, many times.
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Markov Chain Monte Carlo: Result
These are samples from the joint posterior, and can be used to
estimate the joint posterior density.
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Markov Chain Monte Carlo: Result

All the sample values for one parameter, are used to estimate
the marginal density.
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MCMC: Gibbs Sampler

This MCMC algorithm is called a Gibbs sampler.

The recipe for a bivariate sampler:
1. Find Pr(X |Y ) (or something proportional).
2. Find Pr(Y |X) (or something proportional).
3. Pick starting values of (X ,Y ).
4. Repeat the following for desired number of samples:

4.1 Sample new X from Pr(X |Y )
4.2 Sample new Y from Pr(Y |X)
4.3 Save these values



MCMC: Gibbs Sampler

]fragile] You will never have to code this: R has many packages
that construct the Gibbs sampler for you.
The Gibbs sampler is clever because it takes a large
multivariate problem, and turns it into several small univariate
problems.

In many cases, the conditional distribution does not have a
familiar form and so we use an additional method to simulate
from it, ie:

I Metropolis-Hastings step
I Slice sampler
I Data augmentation

These methods are still embedded within a Gibbs sampler.



MCMC: Traceplots

A univariate view of the Gibbs sampler is the traceplot.

This is the typical way to view MCMC output (works for any
number of parameters.) For 10 iterations:
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MCMC: Traceplots

For the entire Markov Chain.
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Note that the chains are a time series which is stationary
around a mean.



Ideology
Historically, there has been a divide between between
Frequentist and Bayesian statistics.

Arguments about the subjectivity of priors, the validity of
asymptotic assumptions

This debate is so 1990s. Now, most applied statisticians use a
mix of Bayesian and Frequentist statistics.

Basically, two reasons why people use Bayesian statistics:
I They like the Bayesian interpretation of probability, are

genuinely interested in incorporating prior information (use
informative priors).

I They like MCMC and find the Bayesian framework
convenient for fitting complex models (use noninformative
priors).



Bayesian Modelling in R

Packages that fit pretty much anything:
I JAGS/BUGS (via R2jags/R2bugs)
I STAN (via rstan)
I MCMCpack

Packages that fit specific models:
I MCMCglmm (super cool)
I BayesLogit
I blmer

And so, so many more.


