$$Y_{ij} \sim \mathcal{B}eta(\mu\delta, (1-\mu)\delta)$$
$$\operatorname{logit}(\mu) = \log(\frac{\mu}{1-\mu}) = \alpha + X_{ij}\beta + \theta_j$$

Y is the response (forest cover), X is the covariate (precipitation), for the $i{\rm th}$ observation in the $j{\rm th}$ site.

 θ_j are site-level deviations from the overall intercept. These are drawn from a normal distribution with variance τ .

$$\theta_j \sim \mathcal{N}ormal(0, 1000)$$

 α is the intercept, β is the slope (all on the logit scale). δ is a parameter controlling the dispersion (variance) around the mean. These (and τ) are all parameters which have vague priors, and are estimated by MCMC.

$$\begin{aligned} \alpha &\sim \mathcal{N}ormal(0, 1000) \\ \beta &\sim \mathcal{N}ormal(0, 1000) \\ \tau &\sim \mathcal{G}amma(0.01, 0.01) \\ \delta &\sim \mathcal{G}amma(0.01, 0.01) \end{aligned}$$