Introduction to RNA-Seq

Dhivya Arasappan

(With some slides borrowed from Scott Hunicke-
Smith and Jeff Barrick)



Goals of the Class

* When considering an RNA-Seq experiment

— What kind of options are available for library
prep?

* When you have an RNA-Seq dataset
— What kind of options are available for analysis?



Logistics

* Commands that | will run today also on
Blolteam wiki:
— https://wikis.utexas.edu/display/bioiteam/

Introduction+to+RNA+Seg+Short+Course
+Commands




Resources

Biolteam Wiki- Bookmark it!
https://wikis.utexas.edu/display/bioiteam

Summer School course materials:

https://wikis.utexas.edu/display/bioiteam/
Introduction+to+RNA+Seg+Course+2015

Other CCBB Short courses:
http://ccbb.biosci.utexas.edu/shortcourses.html

CCBB Bioinformatics consultants



The Purpose of RNA-Seq

Examine the state of the

transcriptome —»  RNA —P> Proteins

Transcription  Translation
Replication
Genes expression patterns vary in:

— Tissue types
Isoform1 N

— Cell types ) ]

— Development stages Gene l- l _ D—-
— Disease conditions S VAR

— Time points Isoform2 _:-

RNA-Seq measures these expression variations using high-
throughput sequencing technologies.

Additionally, RNA-Seq allows detection of novel isoforms of
genes.



Other Uses of RNA-Seq

« Assembling and annotating a transcriptome

« Characterization of alternative splicing
patterns

« Gene fusion detection

« Small RNA profiling

« Targeted approaches using RNA-Seq
o Direct RNA sequencing



Advantages of RNA-Seq

Technology Tiling microarray RNA-Seq
Technology specifications
Principle Hybridization High-throughput sequencing
Resolution From several to 100 bp Single base
Throughput High High
Reliance on genomic sequence Yes In some cases

[ Background noise High Low ]
Application
Simultaneously map transcribed regions and gene expression  Yes Yes
Dynamic range to quantify gene expression level Up to a few-hundredfold >8,000-fold
Ability to distinguish different isoforms Limited Yes

[Aoility to distinguish allelic expression Limited Yes ]
Practical issues

[ Required amount of RNA High Low !
Cost for mapping transcriptomes of large genomes High Relatively low

RNA-Seq: a revolutionary tool for transcriptomics

Zhong Wang, Mark Gerstein, and Michael Snyder

Nat Rev Genet. 2009 January ; 10(1): 57-63. doi:10.1038/nrg2484.



What are your questions ?

* This determines how you set up your experiment
and how you analyze the data.

 What are you looking for?
— Annotating a transcriptome?

— Differential expression?
* Novel transcripts, junctions?
 Differential gene expression?
* Differential exon level counts?
 Differential regulation?

— Small RNA?



Criteria

Biological
replicates

Coverage
across the
transcript

Depth of
sequencing

Role of

sequencing
depth

DSN

Stranded library

prep

Long reads
(>80 bp)

Paired-end
reads

Annotation

Not necessary but can be useful

Important for de Novo transcript assembly and
identifying transcriptional isoforms

High enough to maximize coverage of rare
transcripts and transcriptional isoforms

Obtain reads that overlap along the length of the
transcript

Useful for removing abundant transcripts so that
more reads come from rarer transcripts

Important for de Novo transcript assembly and
identifying true anti-sense trancripts

Important for de Novo transcript assembly and
identifying transcriptional isoforms

Important for de Novo transcript assembly and
identifying transcriptional isoforms

Differential Gene Expression

Essential

Not as important; however the only reads that can be
used are those that are uniquely mappable.

High enough to infer accurrate statistics

Get enough counts of each transcript such that
statistical inferences can be made

Not recommended since it can skew counts

Not generally required especially if there is a
reference genome

Not generally required especially if there is a
reference genome

Not important  Actually important!

From RNA-seglopedia



RNA-Seq... at it’s Most Basic Form
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RNA-Seq Libraries... with More Details
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RNA-Seq Libraries... with More Details
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Isolate RNA Generate cDNA Fragment, ligate adapters

to create seq library

A. Poly A Priming

' 5 AAAAAAAA-T MRNA
3 5’ obgo-dT primes
First strand synthesis Reverse Transcriptase
+ dNTPs C. Priming using pre-ligated oligo
5 ARAAAAAA-3 lllumina Small RNA kit

SOLiD RNA kits

B. Random Priming

g 3' fragmented mRNA
. random prmer

First strand synthesis l Reverse Transcripton

5- 3
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RNA-Seq Libraries... with More Details
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Fragment, ligate adapters
to create seq library

Second Strand Synthesis-

Many Strand Specific
Methods.

Strand-specific libraries for high

throughput RNA sequencing prepared
without poly(A) selection, Zhang et al.



RNA lllumina Tru-Seq library prep

Size selection step

Figure 2: Optimized TruSeq RNA Sample Preparation
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B. First and second strand synthesis
Starting with total RNA, mBNA is polyA-selected and fragmented. It then

undergoes first- and second-strand synthesis to produce products ready
for library construction (Figure 4).

Adaptor ligation and
standard library
preparation

N
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RNA-Seq... at it’s Most Basic Form
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Types of lllumina Fragment Libraries

single-end

—

 —
independent reads

— 7N

— U —_——

two outwardly oriented reads separated by ~3000 nt

two inwardly oriented
reads separated by ~200 nt

|




Comparing Stranded RNA-Seq Library Protocols

b

High complexity: reads have varied starting points Antisense orientation reads measure strand specificity

—

iy~ Soray -:’_:"—_: =t Sense orientation
—— . . .
- e (as annotated) Antisense orientation
- - -

Low complexity: reads have same starting point —@rTr

—_
— —-—
=
_-—T =T Overlaps Does not
— —- — e — ——
— o —— —— e — — — two genes, Qver|ap

. Cene e e——l (not counted) known genes

Even coverage: low CV Performance assessed by comparison with known
e annotation at ends

e e 5" end = —»_‘E. 3 end
...... coverage = / coverage

= = =
— — — .
- Ve N~ Segmentation

e - = (gaps in coverage)

m— ------ Continuity of coverage of annotated transcripts

Figure 2. Key criteria for evaluation of strand-specific RNAseq libraries

Four categories of quality assessment. Double stranded genome (black parallel lines), with
Gene OREF orientation (thick blue arrow) and UTRs (thin blue line), along with mapped
reads (short black arrows — reads mapped to sense strand; red — reads mapped to antisense
strand). (a) Complexity. (b) Strand Specificity. (¢) Evenness of coverage. (d) Comparison to
known transcript structure..

Comprehensive comparative analysis of strand-specific RNA
sequencing methods, Levin et al, 2010



Why is RNA-Seq Difficult?

Biases may mean what we are .

seeing is not reflective of true
state of the transcriptome. 1 )
Ugh’ SpIiCing! Mutually exclusive exons
Gene level, exon level? B .
MUIﬁmapping’ partial mapping’ Alternative 5' donor sites
not mapping. o .
Normalization issues Alternative 3' acceptor sites
— some datasets are larger than mE

others, some genes are larger than

others

From Wikipedia- alternative splicing



How do we analyze RNA-Seq data?

STEP 1: EVALUATE AND MANIPULATE RAW
DATA

STEP 2: MAP TO REFERENCE, ASSESS RESULTS

STEP 3: ASSEMBLE TRANSCRIPTS
STEP 4: QUANTIFY TRANSCRIPTS
STEP 5: TEST FOR DIFFERENTIAL EXPRESSION

STEP 6: VISUALIZE AND PERFORM OTHER
DOWNSTREAM ANALYSIS




STEP 1 - Evaluate Raw Data

FASTQ FORMAT

@HWI-EAS216 91209:1:2:454:192#0/1
GTTGATGAATTTCTCCAGCGCGAATTTGTGGGCT
+HWI-EAS216_91209:1:2:454:192#0/1
B@BBBBBB@BBBBAAAA>@AABA?BBBAAB??>A?

Line 1: @read name
Line 2: called base sequence
Line 3: +read name (optional after +)

Line 4: base quality scores



STEP 1 - Evaluate Raw Data

Illumina Base Quality Scores

http://www.asciitable.com/

Quality character !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHI
| | | | |

ASCII Value 33 43 53 63 73

Base Quality (Q) 0 10 20 30 40

Probability of Error = 10-®/10

(This is a Phred score, also used for other types of qualities.)

Phred Quality Score Probability of incorrect Base call accuracy
base call

10 1in 10 90%

20 1in 100 99%

30 1in 1000 99.9%

Quality scores are ASCIl encoded in fastq files. Different platforms/older sequencing
data can have different encoding! lllumina HiSeq 2500 produces Sanger encoded data.
Phred +33 =ASCIlI
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STEP 1 - Evaluate Raw Data

* Count your reads!
* Assess qua

Quality scores across all bases (Sanger / lllumina 1.9 encoding)
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STEP 1 - Evaluate Raw Data

e Sequence duplication levels does not always indicate

PCR amplication issues.

100

Library complexity is a function of o0
experiment type... o
higher 70
complexity .
less enrichment for TN lower sequence duplication expected
specific sequences genomic more sequencing depth required
40
MNase-seq 30
...and
. 20
exon capture * sequencing depth
* genome size 10
RNA-seq
0
ChlP-seq
more enrichmentfor ~ MiIRNA-seq higher sequence duplication expected
specific sequences \ 4 less sequencing depth required
lower
complexity

Image created by Anna Battenhouse

Sequence Duplication Level >= 23.23%

%Duplicate relative to unigue

Sequence Duplication Level
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Manipulate Raw Data

 Trim low quality bases

— Fastx toolkit- fastx_trimmer

* Trim X number of low quality bases from each
read.

* Filter out low quality reads

— Fastx toolkit- fastq_quality_filter

* Filter out reads with more than X percent of
low quality bases.

 Trim Adaptor
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o RUA PCR Pris
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— Fastx toolkit- fastx_clipper

* Look for and clip a given sequence from the
end of reads

— Cutadapt

* Allows for mismatches
* Paired -end support



RNA-Seq Analysis Pipelines

BWA/

MAP TO
REFERENCE

BOWTIE2

ASSEMBLE
TRANSCRIPTS

ID DEGs

DESeq/DEXSeq/edgeR/

Looking for
DEGs, no
splice events

No novel
transcripts

CUFFDIFF

VISUALIZE, DOWNSTREAM
ANALYSIS

CUMMERBUND/IGV

GOSeq

TOPHAT

l, Novel transcripts

CUFFLINKS

CUFFMERGE

CUFFDIFF

‘am




Table 1 | Selected list of RNA-seq analysis programs

Class Category Package Notes Uses Input
Read mapping
Unspliced Seed methods Short-read mapping package Smith-Waterman extension Aligning reads to a Reads and reference
aligners? (SHRiMP)*41 reference transcriptome transcriptome
Stampy3? Probabilistic model
Burrows-Wheeler Bowtie®?
transform methods BWA%4 Incorporates quality scores
Spliced aligners  Exon-first methods MapSplice®? Works with multiple unspliced Aligning reads to a Reads and reference
SpliceMap®0 aligners reference genome. Allows genome
TopHat®? Uses Bowtie alignments forthe id.entiﬁcat.ion of
novel splice junctions
Seed-extend methods ~ GSNAP®? Can use SNP databases
QPALMAS% Smith-Waterman for large gaps
Transcriptome reconstruction
Genome-guided  Exon identification G.Mor.Se Assembles exons Identifying novel transcripts  Alignments to
reconstruction Genome-guided Scripture?® Reports all isoforms using a known reference reference genome
assembly Cufflinks?? Reports a minimal set of isoforms  9¢"°™M€
Genome- Genome-independent Velvet®? Reports all isoforms Identifying novel genes and Reads
independent assembly TransABySS56 transcript isoforms without
reconstruction a known reference genome
Expression quantification
Expression Gene quantification Alexa-seq*’ Quantifies using differentially Quantifying gene expression Reads and transcript
quantification included exons models
Enhanced read analysis of  Quantifies using union of exons
gene expression (ERANGE)?0
Normalization by expected Quantifies using unique reads
uniquely mappable area
(NEUMA)®?
Isoform quantification  Cufflinks?? Maximum likelihood estimation of Quantifying transcript Read alignments to
MIS0O33 relative isoform expression isoform expression levels isoforms
RNA-seq by expectaion
maximization (RSEM)&®
Differential Cuffdiffe? Uses isoform levels in analysis Identifying differentially  Read alignments
expression DegSeq’? Uses a normal distribution expressed genes or and transcript
EdgeR”7 transcript isoforms models

Differential Expression
analysis of count data
(DESeq)’®

Myrna’®

Cloud-based permutation method

Figure:

Garber et al, Nature Methods, 2011



STEP 2 - Map to Reference

BWA/ TOPHAT
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Mapping to genome

Class (ategory Package Notes

Read mapping

Unspliced Seed methods Short-read mapping package Smith-Waterman extension
aligners® (SHRIMP)*!

Burrows-Wheeler
transform methods

Stampy?® Probabilistic model
Bowtie®?
BWA% Incorporates quality scores

LY o LB ]

Garber et al, Nature Methods, 2011



Spliced mapping

* Needed for identifying and quantifying splice
variants from RNA Seq data.

:‘Z EE:
—TOphat E———ar—a e—a E—a e
.
- SpIICEMap Processed mRNA
— MapSplice
— STAR __—: --------------------- :_E—J—:—_
— RUM Mapping to genome

Trapnell, C. & Salzberg, S. L. How to map
billions of short reads onto genomes.
Nature Biotech. 27, 455-457 (2009).



Spliced mapping

a Exon-first approach

Exon 1 Exon2 | RNA
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.', Exon read mapping
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Seed-extend approach
Exon2 ] RNA
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Figure :
Garber et al, Nature Methods, 2011



What to know about your data before mapping?

KNOW YOUR DATA!
* Paired end? Single end?

. , <
* Traditional RNA-Seq? 3’ tag ? Read
* Insert size estimate?
Theashold === ﬂ
PREPROCESSING NN NNNTP:'S]G,»\CNGCC-'«G GAA CCATGCCTGC RN

* Adaptor sequences trimmed?
* Primer sequences/barcodes removed?
* Poor quality regions trimmed?



What to know about your reference before
mapping?

* Mapping to genome vs transcriptome?

164,744 kb 164,746 kb
Chr64 | | 4 kb | >

" 3 N

' 4 > 4

Before oy ————————
.

1
|
%

* |syour reference the right version?

* Does your annotation match your reference?



What will your reference look like?

* FASTA Format

>gi|254160123|ref| NC_012967.1| Escherichia coli B str. REL606
agcttttcattctgactgcaacgggcaatatgtctctgtgtggattaaaaaaagagtgtc
tgatagcagcttctgaactggttacctgccgtgagtaaattaaaattttattgacttagg
tcactaaatactttaaccaatataggcatagcgcacagacagataaaaattacagagtac
acaacatccatgaaacgcattagcaccaccattaccaccaccatcaccattaccacaggt

* Using complex reference sequence names is a common problem
during analysis. Might rename:

>REL606
agcttttcattctgactgcaacgggcaatatgtctctgtgtggattaaaaaaagagtgtc
tgatagcagcttctgaactggttacctgccgtgagtaaattaaaattttattgacttagg



What will your annotation look like?

* GFF3 Format

segname - The name of the sequence.

source - The program that generated this feature.

feature — Examples: "CDS", "start_codon", "stop_codon", and "exon".
start - The starting position of the feature in the sequence.

end - The ending position of the feature (inclusive).

score - A score between 0 and 1000.

strand - Valid entries include '+', '-', or '." (for don't know/don't care).
Frame — reading frame

group — ID and other information about the entry

Example:
Rel606 refseq cds 1450 1540 500+ . Gene_id=« test_gene »

 Make sure the GFF3 file matches your reference fasta file.



Mapping with BWA

* BWA is a fast short read aligner that uses the
burrows-wheeler transform to perform alignment in

a time and memory efficient manner.

 BWA Variants

— For reads upto 100 bp long
 BWA-backtrack: BWA aln/samse/sampe

— For reads upto 1 Mbp long
* BWA-SW
* BWA-MEM: Newer! Typically faster!



Mapping with BWA

* Create an index of your reference — bwa index
* Run mapping - bwa mem

* Help! I have a large number of reads. Make
BWA go faster!

— Use threading option (bwa —t <threads>)

— Split one data file into smaller chunks, run
multiple, parallel BWA instances, concatenate
results.

* Wait! We have a pipeline for that on lonestar —
runBWA_mem.sh in SBI/bin



(1) Transcriptome alignment (optional)

q

Read are aligned against transcriptome.

e tmmm— [ —— = _— ——
I I ] I Un;n-a-p—;n-e-a-r-e’ads I l I ]
(2) Genome alignment

Multi-exon spanning reads
are unmapped

Reads spanning a single exon are mapped

f )
. —— (| ——

(3) Spliced alignment

Reads are split

into segments
% Unmapped segment

(3-1) Segment alignment to genome

(3-2) Identification of splice sites
(including indels and fusion break points)

(3-3) Segments aligned to junction ; ..........................
flanking sequences ’

flankingseq1 flanking seq2 .

(3-4) Segment alignments stitched
togetherto form whole read alignments

(3-5) Re-alignment of reads minimally
overlapping introns

Transcriptome index

Readsare aligned against genome.

—_—

Genome index

i
|
v

Reads are split into smaller segments
which are then aligned to the genome.

‘ Genome index \

A 4
Segment mappings are used to find potential splice sites
usually when the distance between the mapped positions
ofthe left and the right segments are longer than the
length of the middle part of a read.

)
h 4

Sequences flanking a splice site are concatenated |
and segments are aligned to them. !

Junction flanking index

L
-

Mapped segments against either genome or flanking
sequences are gathered to produce whole read alignments.

}

b

Genome mapped reads with alignments extendinga few
basesinto introns are re-aligned to exons instead.

http://genomebiology.co

Mapping
with
Tophat

m/2013/14/4/R36




Mapping with Tophat

Steps:
1. Index the genome using bowtie
2. Map using tophat

Let’s look at the command.

Help! | have a large number of reads. Make tophat go faster!
Use threading option (tophat -p <threads>)

Split one data file into smaller chunks, run multiple, parallel tophat instances,
concatenate results.

Wait! We have a pipeline for that on lonestar — fastTophat.sh in SBI/bin



Mapping with STAR

* “Spliced Transcripts Alignment to a Reference”
e Faster splice-aware mapper

(a) Map Map again
MMP1 § MMP2

RNA-seq read

exons in the genome

(b) (c)

Map Map
MMP 1 . Extend . MMP 1 . Trim .
mismatches A-tail, or adapter,

or poor quality tail



Mappers comparisons

Mapping Accuracy - Spliced Data to Whole Genome

Mapsplice
Tophat

ABI Bioscope
7 Mapped correctly

M Mapped incorrectly

P P Not mapped

BWA

SOAP

Bowtie

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Mapping %




Mappers comparisons

Accuracy Performance of Aligners

bwa
gshap
rum

star

tophat

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of total reads

o
N

E Correctly Mapped O Incorrectly Mapped 8 Ambiguously Mapped B Unmapped

New benchmarking analysis performed
by Raghav Shroff



Fraction of Total Junctions

0.2

©
-
(o)}

0.12

0.08

©
o
=

Mappers comparison

Junction Detection Performance

gshap rum star tophat

Wincorrectly called junctions B missed junctions

New benchmarking analysis performed
by Raghav Shroff



Mappers comparison

CPU Time - Whole Chromosome

SOAP

Bowtie

BWA

ABI Bioscope

Mapsplice (Threaded)
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Splicemap

Mapsplice (Not Threaded)
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Mappers comparison

CPU time for RNA-seq Aligners
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New benchmarking analysis performed
by Raghav Shroff



Mapping Output: SAM file format

Alignment results generated in Sequence Alignment/
Map format

Tab delimited, with fixed columns followed by user-
extendable key:data values.

Most mappers also output unmapped reads in SAM
file.

SAMTOOLS - toolkit to manipulate, parse SAM files.



Mapping Output: SAM File Format

SAM fixed fields: http://samtools.sourceforge.net/
Col Field Type Regexp/Range Brief description
1 QNAME String [!-7A-"1{1,255} Query template NAME
2 FLAG Int [0,2"°-1] bitwise FLAG
3  RNAME String \*|['-O+-<>-"1['-"1* Reference sequence NAME
4 POS Int [0,2%%-1] 1-based leftmost mapping POSition
5 MAPQ Int [0,2%-1] MAPping Quality
6 CIGAR String  \*| ([0-9]+[MIDNSHPX=])+ CIGAR string
7  RNEXT  String \x|=|['-O+-<>-"]1[!-"1* Ref. name of the mate/next segment
8 PNEXT Int [0,2%9-1] Position of the mate/next segment
9 TLEN Int [-229+1,2%9-1] observed Template LENgth
10 SEQ String  \*|[A-Za-z=.]+ segment SEQuence
11  QUAL String [!-"1+ ASCII of Phred-scaled base QUALity+33

SRR030257.264529

99 NC_012967

1521

29 34M2S = 1564

79 CTGGCCATTATCTCGGTGGTAGGACATGGCATGCCC
AAAAAA;AA;AAAAAA??A%.;?&'3735',()0%,
XT:A:M NM:i:3 SM:i:29 AM:i:29 XM:i:3 XO:i:0 XG:i:0 MD:Z:23T0G4T4



Mapping Output: Mapping Quality

 Mapping quality is the probability that a read is
aligned to the wrong place.
p=10** (-q/10)

* BWA mapping quality calculated by considering:
e Repeat structure of reference
* Read base quality
* Read alignment quality (mismatches etc)
* Number of mappings



Mapping Output: CIGAR score

Ref CTGGCCATTATCTC--GGTGGTAGGACATGGCATGCCC

Read aaATGTCGCGGTG.TAGGAggatcc
2S5M2T14M1D4M6S
Op BAM Description
M 0 alignment match (can be a sequence match or mismatch)
I 1 insertion to the reference
D 2 deletion from the reference
* N 3 skipped region from the reference
S 4 soft clipping (clipped sequences present in SEQ)
* H 5 hard clipping (clipped sequences NOT present in SEQ)
* P 6 padding (silent deletion from padded reference)
* = 7 sequence match .
) Rarer / newer
* X 8 sequence mismatch

CIGAR = "Concise ldiosyncratic Gapped Alignment Report"



Mapping Output: BAM format

SAM files are converted to BAM format through
SAMTOOLS command:

e samtools view —b =S samfile > bamfile

BAM file is binary format.
BAM file is compressed.

BAM files are usually what you need for post
mapping analysis and visualization.



Assess Mapping Results - Samtools

* For parsing and manipulating mapping output
files in SAM and BAM formats.
— Sorting mapping output files
— Merging multiple mapping output files
— Converting from SAM to BAM and vice versa

— Retrieving reads based on different criteria: reads

mapping to a particular region, unmapped reads
etc

— Collecting statistics about your mapping results



Assess Mapping Results - Samtools

1. Convert SAM file to BAM format

samtools view
2. Sort and index newly created BAM file
samtools sort

samtools index

3. Mapping Statistics
samtools flagstat
samtools idxstats



Assess Mapping Results - RNASEQC

Transcript-associated Reads
o Sample Note Intragenic Rate Exonic Rate Intronic Rate Intergenic Rate Expression Profiling Efficiency Transcripts Detected | Genes Detected
K-562 v1.0 dUTPICell Line 0.897 0538 0359 0.103 0411 79,585 18,663
GTEX-N7MS-2526|v1.0 dUTPiBrainl9 638445 0.888 0.446 0442 0.111 0327 87,101 20,970
GTEX-N7TMT-0126 |v1.0 dUTPILung9.074045 0.907 0.464 0.443 0.092 0276 90,362 21217
Coverage Metrics for Bottom 1000 Expressed Transcripts
The metrics in this table are calculated across the transcripts that were determined to have the highest expression levels.
g Note Mean Per | Mean No. 5'100Base No. 3" 100Base | Num. | Cumul. Gap | Gap
P Base Cov. | CV | Covered §' Norm Covered 3' Norm Gaps Length %
K-562 v1.0 dUTPIFibroblast 717 0384 739 0.90 791 0.833 2204 230166 156
: v1.0
GTEX-NTMS-252 . 8 k 2 . 3 ] 2403 20772 3.
IMS-2526 JUTPIBrainl9 638445 535 075 74 0.68 836 0954 403 07728| 138
:x-N7MT-0126|"' 2 2792 22752
GTEX-NTMT-0126 dUTPILungl9 074045 460, 077 713 0.69 788 0.843 2792 227526| 147

It is important to note that these values are restricted to the bottom 1000 expressed transcripts. §' and 3' values are per-base coverage averaged across all top

transcripts. 5’ and 3' ends are 100 base pairs. Gap % is the total cumulative gap length divided by the total cumulative transcript lengths.

Coverage Metrics for Middle 1000 Expressed Transcripts

The metrics in this table are calculated across the transcripts that were determined to have the highest expression levels.

Sl Note Mean Per | Mean No. 5'100Base No. 3" 100Base | Num. | Cumul. Gap | Gap
P Base Cov. CV | Covered 5' Norm Covered 3' Norm Gaps Length %
-562 v1.0 dUTPIFibroblast 2442 062 863 0.79 890 0.787 1045 83828 43
v1.0
“X-N7MS- 2
GTEX-N7MS-2526 dUTPIBrainl0 638445 14,61 061 854 0.59 943 0949 972 69905 335
NN e V10 “ 3 3
GTEX-NTMT-0126 dUTPILungl9 074045 1190 063 852 0.63 877 0.841 1316 90803| 45




Mapping Summary

* Unspliced mappers (BWA, bowtie2) ok when
mapping to the transcriptome.

e Spliced mappers (tophat, STAR) are good for
mapping to the genome.

 Samtools can be used to gather basic mapping
statistics, RNASEQC for RNA specific statistics



STEP 4 and 5: Quantify Expression and ID DEGs

BWA/

MAP TO
REFERENCE

ID DEGs

BOWTIE2

Looking for
DEGs, no
splice events

DESeq/DEXSeq/edgeR/
CUFFDIFF

TOPHAT

CUEELINKS
No novel
transcripts
CUEEIVIERGE
CUEFDIFF




STEP 4: Quantify Expression

e Bedtools

— Bedtools multicov : Takes a feature file (GFF) and
counts how many reads in the mapped output file
(BAM) overlap the features.

— Remember that the chromosome names in your
gff file should match the chromosome names in
the reference fasta file used in the mapping step.

GENOME



gene_A

read
gene_A

gene_A

gene_A

STEP 4 : Quantify Expression

| i
g

gene_A

gene_A

union

gene A

gene A

gene A

gene A

gene A

ambiguous

ambiguous

intersection

_strict

gene A

no_feature

no_feature

gene A

gene A

gene A

ambiguous

intersection
_nonempty

gene A

gene_ A

gene A

gene A

gene A

gene A

ambiguous

HTSeq —

— Gives you fine
grained
control over
how to count
genes,
especially
when a read
overlaps more
than one
gene/feature.



STEP 5: ID Differentially Expressed Genes

* Normalize gene counts

 Represent the gene counts by a distribution that
defines the relation between mean and variance.

* Perform statistical test to compare this
distribution between conditions.

* Provide fold change, P-value information, false
discovery rate for each gene.



STEP 5: ID Differentially Expressed Genes

T T

Normalization Median scaling  Median scaling Median scaling FPKM, but also

size factor size factor/TMM size factor has provisions for
others
Distribution Negative Negative Negative Negative binomial
binomial binomial binomial
Statistical Test Negative Fisher exact test Modified T test T test
binomial test
Advantages Straightforward, Straightforward, Good for Good for
fast, good with  fast, good with identifying identifying
small number of small number of exon-usage isoform-level
replicates. replicates. changes changes, splicing
Allows for changes,
complicated promotor
study designs, changes.
with multiple Not as

factors. straightforward



STEP 5: ID Differentially Expressed Genes

DESeqg2 Input: RAW count data, with each column
representing a biological replicate/condition.

DESeg2 R commands available at:
https://wikis.utexas.edu/display/bioiteam/Testing+for

+differential+expression

Let’s look at bedtools, htseq, DESeq2 results for now.

Cuffdiff covered further down the line.



STEP 3: Assemble Transcripts

ASSEMBLE
TRANSCRIPTS

VISUANMZENDOWNSITIREAM

’A‘\\JV}:V V/LAN L\V/(_;J rs‘

\L\oxolid‘llhf;g 1e)T
‘D“‘\Gfi,/ o

splicelevents

) 3 .,,."«
L *\,\' o CUECTIY

TOPHAT

v Novel transcripts

CUFFLINKS

Nolneyel

LIANSCHIPLS

CUFFMERGE

CUFFDIFF




What is a gene? What is a transcript?

A gene can have multiple transcripts!

A
B

TSS I

{
-

C

 We want to identify all these transcripts,
whether annotated or not.



Why transcript assembly?

Transcript assembly = assembly of mapped reads
into transcriptional units.

Why?
* Define a precise map of all transcripts expressed
in a sample.

* How does our transcriptome look in comparison
to the known transcriptome?

* Look for novel transcripts between conditions/
samples.

* Look for differences in expression for these novel
transcripts between conditions/samples.



TUXEDO PIPELINE Q

/ TopHat

Tophat Aligns RNA-Seq reads to the genome using Bowtie

Discovers splice sites
@ Novel transcripts

Cufflinks package

Cufflinks Py ——— -
I

| Cufflinks |

1 Assembles transcripts :
O S RO

Cuffmerge : “““““““““““““ -

1 Compares transcript assemblies to annotation

I
y Cuffcompare :
I

; Cufimerge

Cuffdiff :
Finds differentially expressed genes and transcripts
Detects differential splicing and promoter use |




Cufflinks version < 2.2.0
(still supported)

Condition A Condition B

. . B,

Mapped

Mappod

Revcds _\ f— Reads

/\

Assembled

Assamblad
franscnpts

transcripts Y

Final
transcrnptome
assembly

Mapped

y

Oitterantial
exprassion results

v

= | =

Mappad

CummeRbund

v

Expression
plots

Cufflinks version >=2.2.0
(optional)

Condition A Condition B

TopHat
,

Mapped Mapped

Reads Y Reads
/ Cufflinks \

Assemblod Assermbled

tranecripls \/_ ranscripts

Cuffmerge

!

Fnal
transcrptome
assembly

Mapped Mapped

Reads _\ l /"_ Reads
/\

CXB file CXB e

|

v

Diffarantial Nommalized
CXPresSSIon resuits expression & count
tables

CummeRbund l

v R. MATLAB,
I Exprossion | ste
plots

The pipeline is
sequential.

Output of one
step becomes
input of next step.

Figure from:
Trapnell et al, Nature
protocols, 2012.



What do we get at the end of running this pipeline?

A view of how the transcriptome is different between
condition C1 and condition C2

* Both in terms of annotated genes and transcripts.
* And novel genes and transcripts

Differential gene expression and so much more...

Differential

. Differential -Differential protein
splicing

promoter use output

D D @ "%

Condition A Condition B Sonditon A Condition B Condition A  Condition B




A. TOPHAT

Tophat maps your data to your reference in a splice-
aware manner, that will also identify junctions. We've
already looked at to run it.

Output: Mapped output in bam format



B. CUFFLINKS

Reconstructs/assembles transcript for each sample.

Why is transcript assembly hard?

Difficult to tell which read came from which
transcript

Many short reads, many transcripts!

* Transcripts are expressed in different amounts.
So, coverage of reads can be vastly different.

* Reads can come from mature mRNA (exons only)
and precursor RNA (containing partial introns).



Table 1 | Selected list of RNA-seq analysis programs
Class Category Package Notes Uses Input
Read mapping

Unspliced Seed methods Short-read mapping package Smith-Waterman extension Aligning reads to a Reads and reference
aligners? (SHRiMP)*1 reference transcriptome transcriptome
Stampy3? Probabilistic model
Burrows-Wheeler Bowtie*?
transform methods BWA%44 Incorporates quality scores
Spliced aligners  Exon-first methods MapSplice3? Works with multiple unspliced Aligning reads to a Reads and reference
SpliceMap®° aligners reference genome. Allows genome
TopHat®? Uses Bowtie alignments for the id_ent]'ﬁcat}'on of
novel splice junctions
Seed-extend methods GSNAP33 Can use SNP databases
QPALMAS4 Smith-Waterman for large gaps
Transcriptome reconstruction
Genome-guided  Exon identification G.Mor.Se Assembles exons Identifying novel transcripts Alignments to
reconstruction Genome-guided Scripture?® Reports all isoforms using a known reference reference genome
assembly Cufflinks?® Reports a minimal set of isoforms 9¢"°™€
Genome- Genome-independent Velvet®?! Reports all isoforms Identifying novel genes and Reads
independent assembly TransABySS56 transcript isoforms without
reconstruction a known reference genome
Expression quantification
Expression Gene quantification Alexa-seq*’ Quantifies using differentially Quantifying gene expression Reads and transcript
quantification included exons models

Enhanced read analysis of  Quantifies using union of exons
gene expression (ERANGE)??

Normalization by expected Quantifies using unique reads
uniquely mappable area

(NEUMA)®&2
Isoform quantification  Cufflinks?? Maximum likelihood estimation of Quantifying transcript Read alignments to
MISO33 relative isoform expression isoform expression levels isoforms

RNA-seq by expectaion
maximization (RSEM)&?

Differential Cuffdiff2? Uses isoform levels in analysis Identifying differentially = Read alignments
expression DegSeq’? Uses a normal distribution expressed genes or and transcript
EdgeR77 transcript isoforms models
Differential Expression H .
analysis of count data Flgu re:
(DESeq)”® Garber et al, Nature Methods, 2011

Myrna’® Cloud-based permutation method



Most commonly used, if you have a genome.

Less resource-intensive We’ll call this coverage islands method

(" N

Transcriptome reconstruction

Genome-guided  Exon identification Assembles exons Identifying novel transcripts
reconstruction  Genome-guid Scripture®® Reports all isoforms using a known reference
\ assembly Cufflinks* Reports a minimal set of isoforms 2 0° y.
Genome- Genome-independent  Velvet®? Reports all isoforms Identifying novel genes and
independent assembly TransABySS6 transcript isoforms without
reconstructid a known reference genome

If you don’t have a genome.
If you believe your sample has major rearrangements

More CPU and RAM intensive

Figure :
Garber et al, Nature Methods, 2011



Genome guided transcript assesmbly

Different assembly methods

* Coverage islands
— ID putative exons by looking for coverage islands.

— Older method, were meant for shorter read lengths.
— G.MorSe

* Exon first approach

— Directly uses mappings of spliced reads to
reconstruct transcriptome.

— Uses graph topology.
— Cufflinks (part of tuxedo suite), scripture



Number of S. pombe genes ™

How do these tools compare?

Figure:
Grabherr et al, Nature Biotech, 2011

M Full-length genes

5,000 -
B Full-length merged
4,000 -
3,000 4
2,000 4
1,000 A
& o @ o0 o = 2 o
Q 8 £ £ g 3
<< <T S =
o 73]
De novo Ab initio
methods methods

o

Number of mouse genes

10,000 4

8,000 4

B Full-length genes

B Full-length isoforms

W
7]
)
m
<

Trans
ABySS
SOAP

Trinity

Cufflinks
Scripture

De novo
methods

3>
'C_D.O‘
85

Program combination

vs. orthology annotation

vs. EST annotation

Base-level accuracy

Confirmed junctions

Base-level accuracy

Confirmed junctions

(%)’ (%)’ (%)’ (%)’
TopHat + Cufflinks 83.9 75.8 68.9 63.0
GSNAP + Cufflinks 79.4 71.2 65.7 58.4
GSNAP + Cufflinks (subsample?) 80.3 72.7 60.2 66.3
TopHat + Scripture 703 67.9 60.8 62.5

'Base level accuracy and percentage of confirmed junctions with different combinations of mapper and assembler on the sample ps94 males compared to the

orthology annotation and the EST annotation (2based on 48 M reads).

doi:10.1371/journal.pone.0046415.t001

Figure:
Palmieri et al,
PLOS One, 2012



& Splice-align reads to the genome
176,800 kb 176,802 kb

Figure :
http://sourceforge.net/
projects/trinityrnaseq/files/

= R e — o O s I o misc/RNASEQ_WORKSHOP/
= ® -8 -@m +0 0 oo ]
=] o— o0 000D o= rnaseq_workshop_slides.pdf
= = @ o o= S vier m=e - - - - ]




How does Cufflinks do transcript assembly

Exon first method!

Aligned
Fragments

Isoform A G —C—
Isoform B . (S




RABT

* Reference annotation based transcript assembly (RABT)

— Uses existing annotation to guide assembly of
transcripts.

Mapped
sequenced
reads

Genome

Reference
annotation

v

Faux
reads

Assembly

Merge and
filter

\ J
Reference annotation

based transcript assembly




After assembly

e Calculates abundance for these assembled
transcripts.

* Normalized using FPKM (Fragments Per
Kilobase of Exon Per Million) (variation of
RPKM)

— RPKM normalizes for transcript length variations
and sequencing depth.

— RPKM= (No.of Mapped reads*1079)/ (length of
transcript *total no.of reads)

— FPKM just exchanges reads with fragments.



General syntax for cufflinks command

cufflinks [options] <accepted hits.bam>

Some of the important options:
-p/--num-threads

-g/--GTF-guide (both annotated and novel
transcripts)

-b/--frag-bias-correct
-u/--multi-read-correct



Let’s look at some results from a
cufflinks transcript assembly

* |nput:
— Tophat mapped results (bam files)
— Transcriptome annotation (genes.gtf)

* Let’s look at the wiki and the output files.



C. CUFFMERGE

* Cuffmerge is used to merge all the transcripts
that cufflinks assembled into one file.

-Replicate 1
Cufflinks assemblies Replicate 2
for condition A )
Replicate 3 == s——— I
Replicate 1 E—
Cufflinks assemblies Replicate 2 —— —
for condition B .
Replicate 3 - I
Merged assembly B - I

from Cuffmerge

FlyBase reference -1 i
annotation -1l - -




C. CUFFMERGE

* Input: All cufflinks assembly files (in gtf format)

* QOutput: merged.gtf
— Your very own gtf file, containing all the transcripts
found in your samples (both novel and otherwise).

— Also information about how the novel transcripts
relate to the known transcripts

 SWITCH TO THE WIKI for instructions on viewing
these results



D. CUFFQUANT

* Given alignment output files and an
annotation file, quantifies isoform expression.

— Don’t care about novels? Just provide an existing
annotation (gtf) file

— Care about novels? Just provide a cufflinks/
cuffmerge assembled (gtf) file



E. CUFFDIFF

Calculates differential expression!

Input:

— Our newly created merged.gtf file or A gtf file we downloaded
(genes.gtf)

— Mapped bam files/cuffquant quantification output

Calculates difference in isoform-level expression among
conditions.

If the chance of seeing this difference is small enough
under the chosen statistical model, it is deemed
signficantly differentially expressed.



E. CUFFDIFF

Figure from: Differential analysis of gene regulation at transcript resolution with rNA-
seq, Trapnell et al, Nature Biotechnology, 2013

d .
Splicing structure of gene “X" Relative abundance
of isoforms

| cosi

TSSI[S:. . . -
TsSi [ ¢ m—— i— :I cosi

b d f

Splicing preference Relative TSS use/ Relative CDS output
within TSS group promoter preference from gene
Cc e g
Differential Differential Differential protein
splicing promoter use output

B

Condition A Condition B Condition A  Condition B Condition A  Condition B




E. CUFFDIFF

 SWITCH TO THE WIKI for instructions on
viewing these results



Cufflinks version >=2.2.0

oo ™™ o OPTIONAL STEP
D2. CUFFNORM

\'K e Generates normalized tables

Cuffmerge

v of expression values.

franscrptome
assembly

- 2 * Ready to take outside the

tuxedo pipeline for any
1 ) further analysis

tables




DESeq/edgeR output vs Tuxedo pipeline output

 We generated differential expressed genes using
DESeq too. So, why the big fuss?

— They were all from annotated genes. So, they all has
flybase ids.

— Now our output has genes with ids ‘CUFF...” - they are
novel.

— In addition to differential gene expression, we also
have results for differential regulation.

— We also have results telling us where our novel
transcripts are with respect to the annotated ones.



Limitations of the Tuxedo Pipeline

A Reference is needed.
 Kind of a black box.

* Not quick.
— Step 1, align the RNA-seq reads to the genome: ~6 h
— Steps 2—4, assemble expressed genes and transcripts: ~6 h
— Step 5, identify differentially expressed genes and transcripts:~6 h

If you don’t have a genome:
 De novo transcriptome assembly using trinity.
 Map your data to this to calculate gene expression changes.



dispersion

STEP 6: Visualize and Perfom Other
Downstream Analysis

* Visualize using Cummerbund

iPS hESC

Fibroblasts

FPKM + 1

expressionPlot (iscforms (tpnl), logMode=T) b
sig_genes <- getGenes{cd, geneldList)
103.0 J cgHeatmap (sig_genes,
clustering="row"*,
labRow=F)
1025 -
102.0 i
10'5 - log,, FPKM + 1
y N
100 - B os
10°5 - . 1.0
.15
T I 1 T 2.0
Exp H60 H120 H168 , 25
Sample_name R 3.0
Tracking_id e
g— Q}"Q Q)Q\Q/Q\b%
- AK002271.1 — AK077713.1 ‘2\6 b
— AKO032942.1 — NM_024427.4



STEP 6: Visualize and Perfom Other
Downstream Analysis

Visualize using Cummerbund
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STEP 6: Visualize and Perfom Other

Downstream Analysis
* Visualization using IGV
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STEP 6: Perfom Other Downstream Analysis

* |D enriched gene ontology (GO) terms in our DEGs using GOSeq

* Commands and the examples on the wiki.

* For GO enrichment, we take the following things into account:
A. Total number of genes we are looking at.

B. Number of genes of interest, that is, in our DEG list.
C. Total number of genes in the GO term

D. Number of genes from our genes of interest that are also in the GO
term.

If the number of genes from our list that belong to GO term (D) is
significant compared to the total number of genes in that GO term
(C) and the total number of genes in our experiment (A), we
consider that GO term to be enriched in our data.



STEP 6: Perfom Other Downstream Analysis
* Enrichr- GUI for GO/pathway enrichment analysis

amp.pharm.mssm.edu/Enrichr

H3K4me3_MEL cell line_mm9

transferrin transport (GO:0033572) fi3ac.myocyte_mmd

DNA-templated transcription, initiation (GO:0006352) -
H3K36me3_erythroblast mm9

oxygen transport (GO:0015671) uscle myoblast_hg19

ruffle organizaion (GO:0031529)
negative regulation of type | interferon production (GO:0032480)

regulation of vesicle fusion (GO:0031338)
response to caffeine (GO:0031000)

| | | . ENCODE histone
negative regulation of DNA biosynthetic process (GO:2000279)

regulation of type | interferon production (GO:0032479) mOd iﬁcaﬁons
GO terms network graph

ceramide signaling pathway
trefoil factors initiate mucosal healing
toll-like receptor pathway

apoptotic signaling in response to dna damage O M I M Expa nd ed te rms

i122 soluble receptor signaling pathway

polydactyly
hemoglobins chaperone complex_i
mechanisms of transcriptional repression by dna methylation leukoencephalopathy

nuclear receplors coordinate the activities of chromatin remodeling complexes and autism

|M|0n0'r,ull_1 ar proliferation by gleevec zellweger_syndrome

WWm pyk2 and map kinases grcogei stomge disease

leigh_syndrome
cardiomyopathy,_hypertrophic

Biocarta pathways bar chart dystonia
|episodic_ataxia



Thank you!

e Visit the Bioinformatics Consultants at GDC

* Come to Byte Club meetings
— Join UT Lists-bioiteam



APPENDIX: Submitting Jobs to Lonestar

* https://wikis.utexas.edu/display/bioiteam/
Submitting+Jobs+to+Lonestar



Differential Adaptor

RNA ligation®®

3" and 5" adaptors ligated
sequentially to RNA with cleanup

lllumina RNA ligation

3" pre-adenylated adaptors and
5" adaptors ligated sequentially
to RNA without cleanup

(S. Luo & G. Schroth, pers. comm.)

SMART (Switching Mechanism
at 5" end of RNA Template)*®

Non-template ‘C’s on
5 end of cDNA

SMART - RNA ligation (Hybrid)

Adaptor ligated on 3" end of RNA
and non-template ‘C’s on 5" end of
cDNA; template switching, PCR

NNSR (Not Not So Random priming)*?

1st and 2nd strand cDNA synthesis

with adaptors on ends of the primers

Differential Marking

Bisulfite>®

Convert ‘C’s to ‘U’s in RNA

dUTP 2nd strand'®

2nd strand synthesis with dUTP,
remove ‘U’s after adaptor ligation
and size selection

mRNA
+ = 3" adaptor
ligation
gel size selection
5" adaptor =— +
ligation
gel size selection

mRNA
+ % == 3’ pre-adenylated
ligation adaptor
no gel size selection
5" adaptor =— +
ligation
no gel size selection

mRNA
l template
switch

CDNA ¢

primer

\GGG—
l PCR N

GG

e CCC

mRNA .
+ = 3" adaptor

ligation, gel size selection
1st strand cDNA synthesis

cee —— 3" adaptor

l template switch

GGG s e
00 e e

V4

mRNA
| N

"~ 2nd strand cDNA

1st strand cDNA

-C mRNA

CC—CC—
l bisulfite
UU—Uuu—

lRT

TT e TT e
AA m— AA =

-u

-T
-A

cDNA

cDNA
2nd strand synthesis
with dUTP

=U UU=—Uy=—

y
T

-

Appendix

Levin et al.

Page 10

Figure 1. Methods for strand-specific RNA-Seq

Salient details for seven protocols for strand-specific RNA-Seq,
differential adaptor methods (a) and differential marking methods (b).
MRNA is shown in grey, and cDNA in black. For differential adaptor
methods, 5’ adaptors are shown in blue, and 3’ adaptors in red.



QNAME SRR035022.262

FLAG

APPENDIX SAM FILE FLAGS EXPLAINED

163

The QNAME is the query name. For the FLAG of 163 we transform this into a binary

string: 10100011. So accordingly to the flag table:

Flag Description
0x0001 |the read is paired in sequencing, no matter whether it is mapped in a pair
0x0002 |the read is mapped in a proper pair (depends on the protocol, normally inferred during alignment)
0x0004 |the query sequence itself is unmapped
0x0008 |the mate is unmapped !
0x0010 |strand of the query (0 for forward; 1 for reverse strand)
0x0020 |strand of the mate
0x0040 |the read is the first read in a pair 1.2
0x0080 |the read is the second read in a pair 1.2
0x0100 |the alignment is not primary (a read having split hits may have multiple primary alignment records)
0x0200 |the read fails platform/vendor quality checks
0x0400 |the read is either a PCR duplicate or an optical duplicate

mate is not unmapped
1  thereadis paired in sequencing, no forward strand

matter whether it is mapped in a pair
the read is mapped in a proper pair

1
0

mate strand is negative

R O PFr OO

not unmapped

the read is not the first read in a pair
the read is the second read in a pair



APPENDIX
Of course, Tuxedo Pipeline can be run without
looking for novel events

* NO NOVEL JUNCTIONS: Simple differential gene expression
analysis against a set of known transcripts.

— User provides a gff/gtf file containing annotated features. Quantify
only the annotated features and id DEGs.

* NOVEL JUNCTIONS ALSO: In addition to known transcripts,
novel transcripts should be explored.

— User provides a gff/gtf file containing annotated features. But you
also allow the search for novel variants as well. Both annotated and

novel variants are quantified and DEGs are identified.

 ONLY NOVEL/DE NOVO JUNCTIONS: No gff/gtf file is provided.
Using just the read data and the genome reference, construct
de novo transcripts, quantify them and id DEGs.




APPENDIX
Other differential expression tools vs cuffdiff

Others Cuffdiff

Raw count method for assigning counts | Isoform deconvolution method for

to genes assigning counts to genes

Count the reads mapping to exons of Count the reads that map to each
each gene/normalization factor = isoform of the gene/normalization
expression for gene factor = expression for gene

If all isoforms of the gene are up/down, | If all isoforms of the gene are up/down,
works fine works fine

If some isoforms of the gene are up and | If some isoforms of the gene are up and
some are down, inaccurate results some are down, works fine




APPENDIX

Exon-union
I I
a - model
Isoform A
Isoform B ]
‘f bl ‘—"L—‘ — Exon-intersection
e e -€ model
b Log fold-change Log fold-change Log fold-change
Condition A Condition B (union count) (intersect count) (true expression)
- - = - - EE = - m
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Figure 1 Changes in fragment count for a gene does not necessarily equal a change in expression. (a) Simple read-counting schemes sum the fragments
incident on a gene’s exons. The exon-union model counts reads falling on any of a gene’s exons, whereas the exon-intersection model counts only reads

on constitutive exons. (b) Both of the exon-union and exon-intersection counting schemes may incorrectly estimate a change in expression in genes with
multiple isoforms. The true expression is estimated by the sum of the length-normalized isoform read counts. The discrepancy between a change in the union
or intersection count and a change in gene expression is driven by a change in the abundance of the isoforms with respect to one another. In the top row,

the gene generates the same number of reads in conditions A and B, but in condition B, all of the reads come from the shorter of the two isoforms, and thus
the true expression for the gene is higher in condition B. The intersection count scheme underestimates the true change in gene expression, and the union
scheme fails to detect the change entirely. In the middle row, the intersection count fails to detect a change driven by a shift in the dominant isoform for the
gene. The union scheme detects a shift in the wrong direction. In the bottom row, the gene’s expression is constant, but the isoforms undergo a complete

Figure from: Differential analysis of gene regulation at transcript
resolution with rNA-seq, Trapnell et al, Nature Biotechnology, 2013



