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Overview 

}  Quantifying spatial patterns (spatial autocorrelation 
analysis) 

}  Exploring potential explanatory factors (regression) 

}  Global & local 
}  Effects of scale 



Spatial autocorrelation 

}  Points (location) vs attributes 



Spatial analysis: attributes 

}  Measuring spatial autocorrelation: 
}  Based on both feature locations and feature values 

simultaneously. 
}  (x,y, z), where z is measured at interval or ratio level. 



Why measure SAC? 



www.cdc.gov/diabetes 

County-level Estimates of Diagnosed Diabetes among Adults aged ≥ 20 years:                                                       
United States 2009 

 

Age-adjusted percent 
0 - 6.3
6.4 - 7.5
7.6 - 8.8
8.9 - 10.5
> 10.6











Why measure SAC? 



Why measure SAC? 

Natural breaks 



Why measure SAC? 

Equal interval 



Measuring Spatial Autocorrelation 

}  How similar or different are attribute values relative to 
associated geographic locations? 
}  Comparison of attribute values? 

}  Comparison of geographic locations? 
}  Concepts of distance, adjacency, interaction, neighborhood 
}  Spatial relationship between all pairs of locations 

¨  Spatial weights matrix- contiguity, distance, threshold, nearest neighbors, 
etc. 

¨  W represents a hypothesis about the spatial structure of phenomena 
under study 
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Moran's I 
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Covariance:  
If i and j are on same side of mean = + 
If i and j are on different side of mean = - 



Moran's I 
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Covariance weighted by spatial 
weights matrix 



Moran's I 
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Normalize I relative to n, spatial 
relationships, and range of values in y  



Moran's I 

}  Most often used with polygons with interval/ratio data 
}  Based on the product of 2 polygons’ differences from the 

overall mean (“how much do they vary together?”) 
(http://www.spatialanalysisonline.com/output/html/MoranIandGearyC.html) 

}  The larger the value of I, the stronger the spatial 
autocorrelation. 
}  I is not strictly limited to the range -1 to 1. 
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Geoda 

}  https://geodacenter.asu.edu/ 



Moran’s I example 

}  Z score? 
}  Expected index? 



Randomization null hypothesis 

}  Exp(I)= -1/(n – 1),  
n = number of features 

}  So Exp(I) is always _______ 
}  As n increases, Exp (I) _______ 



Randomization null hypothesis 

}  Exp(I)= -1/(n – 1),  
n = number of features 

}  So Exp(I) is always negative 
}  As n increases, Exp (I) decreases 



Randomization null hypothesis 

}  Exp(I)= -1/(n – 1), n = number of features 

}  -1/(5226-1) = -0.0002 

}  Z = (Io – IE)/(SDIE
) 



Randomization null hypothesis 

}  Exp(I)= -1/(n – 1), n = number of features 

}  -1/(5226-1) = -0.0002 

}  Z = (Io – IE)/(SDIE
) 

}  (Use Bonferroni corrections, Monte Carlo 
permutations) 



http://benthamopen.com/todiaj/articles/V005/29TODIAJ.pdf 
 



Moran’s I illustration 
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Moran’s I illustration 
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Moran’s I illustration 
yi yj 

15 18 5 8 40 

12 8 2 -2 -4 

8 12 

Mean of y = 10 
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yj 



Moran’s I illustration 
yi yj 

15 18 5 8 40 

12 8 2 -2 -4 

8 12 -2 2 -4 

2 5 -8 -5 40 

Mean of y = 10 

yi 

yj 



General G-statistic 

}  Moran’s I show whether nearby features are similar, not 
whether the similarity is among high or low values 

}  General G-statistic measures concentration of values 
over an area 
}  h-h clusters (“hot spots”) 
}  l-l clusters (“cold spots”) 



Getis-Ord General G 

Multiplies attribute values for each pair 
within neighborhood; HIGH product = H-H; 
LOW product = L-L 

Divided by unweighted sum 
of products of all features 

When obs G > exp G = hot spot;  
When obs G < exp G = cold spot 



Getis-Ord General G 

}  G identifies whether local clusters have statistically 
significant high or low attribute values. 
}  When obs G > exp G = hot spot;  When obs G < exp G = cold spot 

}  E(G) =  - 



Result High/Low Clustering  
(G) Spatial Autocorrelation (I) 

The p-value is not statistically 
significant. 

You cannot reject the null hypothesis. the observed spatial 
pattern of values could result from CSR/IRP 

The p-value is statistically 
significant, and the z-score is 
positive (>1.96). 

Hot spot Positive spatial autocorrelation 

The p-value is statistically 
significant, and the z-score is 
negative (<-1.96). 

Cold spot Negative spatial autocorrelation 



Spatial Statistics 

Global 

}  Summarize data for whole 
regions 

}  Similarities across space 
}  Single statistic 
}  Unmappable   
}  Search for regularities 

Local 

}  Local disaggregations of 
global statistics 

}  Differences across space 
}  Multi-valued statistic 
}  Mappable 
}  Search for exceptions (ex. 

‘hotspots’) 



SAC 

}  Local indicators of spatial association (LISA)- refer to 
local versions of Moran’s I (Ii) and Geary’s c (ci). 

}  How to convert global statistic to local statistic? 
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SAC 

}  Local indicators of spatial association (LISA)- refer to 
local versions of Moran’s I (Ii) and Geary’s c (ci). 

 

∑ )(*
)(

= 2
j

jij
i

i xxw
s
xx

I - 
- 

Difference between 
target and mean 

Sum of differences between 
each neighbor and mean 

Variance 



LISA example 

}  Bird species richness in NY 



Local Moran’s I 

}  High + z score (> 1.96)? = H-H, L-L (cluster) 
}  High – z score (< -1.96)? = H-L, L-H (outlier) 



(Local) statistics ‘best practices’/issues 

}  Different swm definitions 
}  All features should have at least 1 neighbor 
}  No feature should have all other features as neighbor 
}  Standardize rows (usually) with polygons 

}  n > 30 
}  Input field must be a count, rate, or similar numeric value 

}   no negative values 

}  Edges, small distances can cause problems 
}  Use corrections (Bonferroni, etc) or Monte Carlo 

simulations to determine statistical significance 



Review 

}  Is there a spatial pattern (clustering/dispersal)? 
}  GLOBAL stats (Moran’s I, Geary’s c, General G) 

}  Where is the spatial pattern? 
}  LOCAL stats 
}  Where are clusters are high values? Where are clusters of low 

values? Gi * 
}  Where are outliers (clusters of high surrounded by low or 

clusters of low surrounded by high)? Moran’s Ii 

















Besides facilitating the identification of 
clusters, we argue that the observed 
trajectories of the Gi* statistic at different 
distances can reveal the patterns of malaria 
transmission, and the importance of choosing 
the most appropriate distance. Next we show 
a series of graphs and maps that highlight 
the trajectories of the Gi* statistic for 
distances ranging from 500 to 8000 m. Each 
line in the graph represents the trajectory of 
Gi* values for one single plot, and the thick 
black lines are the cutoff values at a 5% level 
given by the FDR procedure for multiple 
testing. 
Fig. 3 shows the trajectories for Tract 1 in 1986. A few plots are associated with a 
downward pattern (darker lines), and they are all located in the Southeastern 
portion of Tract 1. In fact, this is the area where the small cluster of low malaria 
rates is 
observed in that year, with an average rate slightly above 8%. The remaining plots 
in Tract 1 reveal an upward trend in the local statistic, suggesting that as distance 
increases the additional plots added to the neighborhood contribute to the pattern of 
clustering of high malaria rates in the area. The cloud of increasing lines is an 
indication of the dramatic increase of malaria transmission registered in 
Machadinho in 1986. 



Two patterns are observed 
for Tract 2 in 1986, as 
shown in Fig. 4. The first is a 
tendency for clustering 
of low values, represented 
by graph (a) and given by 
plots colored as light gray in 
the map. The few lines 
that after a certain distance 
show an increase in the 
indicator are associated with 
locations closer to the 
border between Tracts 1 and 
2. So, as distance 
increases, the set of 
neighbors for these plots will 
include locations in Tract 1 
that have very high rates 

of malaria, changing the direction of the statistic. The second pattern, shown in graph (b) and 
associated with plots colored as dark gray in the map, has the opposite behavior. The tendency for 
clustering around high values is mainly restricted to the border between Tracts 1 and 2. Both 
graphs suggest a threshold at 3500 m, which is the distance used to compute the Gi statistic. 
Although this is by no means a proof that the correct distance was chosen, it is encouraging to 
detect underlying spatial processes acting at that distance. 



}  Bivariate LISA 
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Fig. 3   A conceptual schematic of the Moran's I  i   scatterplot. Arrows within each class represents the direction of Moran's I values 
from 0 to 1. Each quadrat represents the relationship between observation  i  and its neighborhood. In addition, each qua... 

A GIS-based risk rating of forest insect outbreaks using aerial overview surveys and the local Moran's I statistic 

Applied Geography Volume 40 2013 161 - 170 

http://dx.doi.org/10.1016/j.apgeog.2013.02.011 





Bivariate LISA example 
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Where? 
}  Where are incidences of cancer higher than other 

places? 
}  Where are the hot spots for crime, 911 emergency calls, 

fires? 
}  Where are intersections that have high numbers of 

traffic accidents? 



N plants = 36.75 + (0.5) precip 



Geographically weighted regression 

}  Addresses the non-stationarity directly 
}  Allows the relationships to vary over space, i.e., βs do not 

need to be the same 
}  yi=βi0 + βi1x1i+ βi2x2i+……+ βinxni+εi 

Instead of remaining the same everywhere, βs now vary by 
locations (i) (and R2) 



GWR kernel 

    

From Fotheringham, Brundson and Charlton. 2002. Geographically Weighted Regression 

GWR with fixed kernel    GWR with adaptive kernel 

Points are weighted based on distance from center of kernel 
e.g. Gaussian kernel where weighting is given by:  

  wi(g) = exp[-1/2(dij/b)2  where b is bandwidth 
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SS total
SS regression2 =r

So, proportion of the total variation in Y 
accounted for by the regression, 
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}  Homicide rate = f(pop density) 



Scatter Plot
Trend

Graph of Nat_proj_uniq
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}  Homicide rate = f(pop density) 





Global coeff = 0.7002  

Homicide rate = f(population density) 



More GWR info 

}  http://www.st-andrews.ac.uk/geoinformatics/gwr/ 
}  Fotheringham et al, 2002 
}  Foody, 2004 
}  Osborne, et al. 2007: Non-stationarity and local 

approaches to modelling the distributions of wildlife. 
Diversity and Distributions 13, 313–23. 



Example applications: 



Foody, G. M. (2004b) Spatial nonstationarity and scale-dependency in the 
relationship between species richness and environmental determinants for the 
sub-Saharan endemic avifauna. Global Ecology and Biogeography, 13, 
315-320.  

Sub-Saharan Africa: 

(bird) Species richness = f(NDVI, Temp, Precip) 







“There was strong spatial heterogeneity in palm richness–climate relationships, as 
evidenced by a minimum AICC difference between GWR and OLS models of ΔAICC 
= 663 (median 1515, maximum 3043).”  



Fraction of variation uniquely explained by the water variables (C) and energy variables (D) 
obtained from variation partitioning 



Figure 3. Latitudinal trends in 
the ability of water and 
energy to explain American 
palm species richness. 
 
The amount of variation in 
palm species richness locally 
explained by energy 
variables (A–D) and water 
variables (E–G) plotted 
against latitude. A, B: total 
energy (Re). C, D: pure 
energy (Rpe). E, F: total 
water (Rw). G, H: pure water 
(Rpw). Regression lines 
obtained from OLS 
regression (black) and SAR 
regression (red). 



‘Stationarity index’ example 











Figure 5: GWR-derived local coefficient estimates for (a) temperature, (b) distance from shore, and (c) snow 
crab and (d) shrimp as predictors of cod presence/absence in the 2J3KL region for autumn 2001. Positive 
values are shown as filled circles and negative values as unfilled circles. A significant threshold of 95% was 
used to mask out points where the relationship between cod and the predictor variable was not significant 
(plus signs).  



Windle M J S et al. ICES J. Mar. Sci. 2010;67:145-154 

k c n 
Temperatu
re 

Distance 
from shore Snow crab Shrimp 

2 1 351 0.338 
(0.086) 

−0.000008 
(0.000001) 

−0.601 
(0.329) 

0.270 
(0.069) 

2 130 
0.321 
(0.122) 

0.000002 
(0.000006) 

0.247 
(0.308) 

0.436 
(0.024) 

3 1 172 
0.408 
(0.071) 

−0.000008 
(0.000001) 

−0.316 
(0.189) 

0.317 
(0.074) 

2 113 0.308 
(0.126) 

0.000003 
(0.000005) 

0.317 
(0.265) 

0.441 
(0.020) 

3 196 0.283 
(0.040) 

−0.000008 
(0.000001) 

−0.818 
(0.238) 

0.241 
(0.051) 

4 1 117 0.369 
(0.068) 

−0.000008 
(0.000001) 

−0.418 
(0.126) 

0.367 
(0.035) 

2 112 
0.308 
(0.126) 

0.000003 
(0.000005) 

0.321 
(0.263) 

0.441 
(0.020) 

3 186 0.285 
(0.042) 

−0.000008 
(0.000001) 

−0.829 
(0.239) 

0.234 
(0.045) 

4 66 0.452 
(0.067) 

−0.000007 
(0.000001) 

−0.176 
(0.201) 

0.234 
(0.026) 

Table 4: Mean GWR parameter estimates from the model of 2J3KL cod 
distribution in autumn 2001 (212 km bandwidth) for each group identified by 
the k-means cluster analyses (s.d. in parentheses).  





Inference with local statistics 

}  Random null hypothesis means z scores > 1.96 and < 
-1.96 are unusual 

_



Inference with local statistics 

}  Random null hypothesis means z scores > 1.96 and < 
-1.96 are unusual 

}  Expected Gi is the proportion of the study area 
accounted for by the neighborhood of location i 
}  (under assumption of random distribution of attribute values…) 



How many “statistically significant” hot or 
cold spots are in this study area? 



How many “statistically significant*” hot or 
cold spots are in this study area? 

}  2034/5226 = 39% 

* Compared to CSR/IRP,  but we already determined that 
these data exhibit + SAC… (stat sig + Moran’s I) 

}  Statistical tests of local statistics are inherently 
non-independent 



How many “statistically significant*” hot or 
cold spots are in this study area? 

}  2034/5226 = 39% 

 Statistical tests of local statistics are inherently 
non-independent 

 
}  Some solutions/strategies: 

}  Bonferroni correction 
}  a’ = a/n; a’ = 0.05/3085 =  0.0000162;      z = 4.15 
}  (http://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html) 

}  Conditional Monte Carlo simulations (of attribute values) to determine 
pseudosignificance values 



Simulation to get distribution of  (random) values 

14.43 


