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Overview

Quantifying spatial patterns (spatial autocorrelation
analysis)

Exploring potential explanatory factors (regression)

» Global & local

» Effects of scale



Spatial autocorrelation
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Spatial analysis: attributes

Measuring spatial autocorrelation:

» Based on both feature locations and
simultaneously.

» (%Y, 7), where z is measured at interval or ratio level.



Why measure SAC?




County-level Estimates of Diagnosed Diabetes among Adults aged 2 20 years:
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The southeastern region of the United States is known as the “stroke belt” because of excess stroke
mortality in this region compared to the rest of the country. However, whether a similar geographic variation
in heart failure mortality exists is unknown. Using the Center for Disease Control and Prevention
Wide-ranging Online Data for Epidemiologic Research publicly available compressed mortality data files and
2000 United States population as the standard, we estimated age-adjusted heart failure and stroke mortality
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Why measure SAC?




Natural breaks

Why measure SAC?




Equal interval




Measuring Spatial Autocorrelation

How similar or different are attribute values relative to
associated geographic locations!?

» Comparison of attribute values?

» Comparison of geographic locations?
Concepts of distance, adjacency, interaction, neighborhood

Spatial relationship between all pairs of locations

O Spatial weights matrix- contiguity, distance, threshold, nearest neighbors,
etc.

0 W represents a hypothesis about the spatial structure of phenomena
under study
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Covariance weighted by spatial

Moran's / weights matrix
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Most often used with polygons with interval/ratio data

Based on the product of 2 polygons’ differences from the

overall mean (“how much do they vary together?”)
(http://www.spatialanalysisonline.com/output/html/MoranlandGearyC.html)

» The larger the value of |, the stronger the spatial

autocorrelation.
| is not strictly limited to the range -1 to |.




» https://geodacenter.asu.edu/




Moran’s I example

Z score!

Expected index!?



Randomization null hypothesis

Exp()=-1/(n-1),
n = number of features

So Exp(/) is always
As n increases, Exp (/)




Randomization null hypothesis

Exp()=-1/(n-1),
n = number of features

So Exp(/) is always negative
As n increases, Exp (/) decreases




Randomization null hypothesis

Exp(/)=-1/(n — 1), n = number of features
» -1/(5226-1) = -0.0002

Z = (I,~ Ig)/(SD)



Randomization null hypothesis

Exp(/)=-1/(n — 1), n = number of features
» -1/(5226-1) = -0.0002

Z = (I,~ Ig)/(SD)

(Use Bonferroni corrections, Monte Carlo
permutations)



The Open Diabetes Journal, 2012, 5, 29-37 29

Spatial Clusters of County-Level Diagnosed Diabetes and Associated Risk
Factors in the United States

Sundar S. Shrestha', Karen A. Kirtland, Theodore J. Thompson, Lawrence Barker, Edward W. Gregg
and Linda Geiss

Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Abstract: Introduction: We examined whether spatial clusters of county-level diagnosed diabetes prevalence exist in the
United States and whether socioeconomic and diabetes risk factors were associated with these clusters.

Materials and Methods: We used estimated county-level age-adjusted data on diagnosed diabetes prevalence for adults in
3109 counties in the United States (2007 data). We identified four types of diabetes clusters based on spatial
autocorrelations: high-prevalence counties with high-prevalence neighbors (High-High), low-prevalence counties with
low-prevalence neighbors (Low-Low), low-prevalence counties with high-prevalence neighbors (Low-High), and high-
prevalence counties with low-prevalence neighbors (High-Low). We then estimated relative risks for clusters being
associated with several socioeconomic and diabetesrisk factors.

Results: Diabetes prevalence in 1551 counties was spatially associated (p<0.05) with prevalence in neighboring counties.
The rate of obesity. physical mactivity, poverty, and the proportion of non-Hispanic blacks were associated with a county
being in a High-High cluster versus being a non-cluster county (7% to 36% greater risk) or in a Low-Low cluster (13% to
67% greater risk). The percentage of non-Hispanic blacks was associated with a 7% greater risk for being in a Low-High
cluster. The rate of physical inactivity and the percentage of Hispanics or non-Hispanic American Indians were associated
with being 1n a High-Low cluster (5% to 21% greater risk).

Discussion: Distinct spatial clusters of diabetes prevalence exist in the United States. Strong association between diabetes
clusters and socioeconomic and other diabetes risk factors suggests that interventions might be tailored according to the
prevalence of modifiable factors in specific counties.

> it :/[benthamopen.com/todiaj/articles/\V005/29TODIAJ.pdf




Moran’s I i1llustration

Mean of y = 10




Moran’s I i1llustration

Mean of y = 10




Moran’s I i1llustration

Mean of y = 10




Moran’s I i1llustration

Mean of y = 10




General G-statistic

» Moran’s | show whether nearby features are similar, not
whether the similarity is among high or low values

» General G-statistic measures concentration of values
over an area

» h-h clusters (“hot spots”)
» |-l clusters (“cold spots”)
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Getis-Ord General G

where x; and @; are attribute values for features ¢ and j. and w; ; is the spatial weight between
feature 7 and 7.

Divided by unweighted sum
of products of all features

When obs G > exp G = hot spot;
When obs G < exp G = cold spot



Getis-Ord General G
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where x; and @; are attribute values for features ¢ and j. and w; ; is the spatial weight between
feature 7 and 7.

» G identifies whether local clusters have statistically
significant high or low attribute values.
When obs G > exp G = hot spot; When obs G < exp G = cold spot




High/Low Clustering

Result (G) Spatial Autocorrelation (1)
The p-value is not statistically You cannot reject the null hypothesis. the observed spatial
significant. pattern of values could result from CSR/IRP

The p-value is statistically
significant, and the z-score is Hot spot Positive spatial autocorrelation
positive (>1.96).

The p-value is statistically
significant, and the z-score is Cold spot Negative spatial autocorrelation
negative (<-1.96).



Spatial Statistics

Global Local
Summarize data for whole Local disaggregations of
regions global statistics
Similarities across space Differences across space
Single statistic Multi-valued statistic
Unmappable Mappable
Search for regularities Search for exceptions (ex.

‘hotspots’)



Local indicators of spatial association (LISA)- refer to
local versions of Moran’s | (I) and Geary’s c (c)).
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How to convert global statistic to local statistic?



Local indicators of spatial association (LISA)- refer to
local versions of Moran’s | (1) and Geary’s c (c)).

Sum of differences between
each neighbor and mean




LISA example

Bird species richness in NY



Local Moran’s
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Local I Index Z-scores P-values Cluster Type
» High + z score (> 1.96)? = H-H, L-L (cluster)
» High — z score (< -1.96)? = H-L, L-H (outlier)




(Local) statistics ‘best practices’/1ssues

Different swm definitions
» All features should have at least | neighbor
» No feature should have all other features as neighbor

» Standardize rows (usually) with polygons

n> 30

Input field must be a count, rate, or similar numeric value
» no negative values

Edges, small distances can cause problems

Use corrections (Bonferroni, etc) or Monte Carlo
simulations to determine statistical significance



Is there a spatial pattern (clustering/dispersal)?
» GLOBAL stats (Moran’s I, Geary’s ¢, General G)

Where is the spatial pattern?

» LOCAL stats

» Where are clusters are high values! Where are clusters of low
values? G, *

» Where are outliers (clusters of high surrounded by low or
clusters of low surrounded by high)? Moran’s |,
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A spatial taxonomy of broadband regions in
the United States

Tony H. Grubesic *

Abstract

The steady growth of broadband penetration in the United States is indicative of a major shift in
advanced data services and last-mile infrastructure in the deregulated telecommunication environ-
ment. Although there are concerns with the equitable provision of broadband services in urban, rural
and remote areas, the diffusion process has also created a unique landscape of broadband availability
that reflects elements of competition, federal policy, local government initiatives, technological lim-
itations and location. This paper explores the dynamic and diverse spatial landscape of broadband
availability in the United States at the zip code level, for 2004. In addition, this study provides a mul-
tivariate, spatial taxonomy of broadband regions, highlighting their socioeconomic and demo-
graphic differences.



. High-high "broadband core’: Where zip codes displaying high levels of broadband
availability and competition are surrounded by other zip codes with similar values.
These regions correspond to the greatest levels of broadband availability and competi-
tion in the United States and are primarily located in urban areas.

. Low-low “broadband periphery”: Where ap codes displaying low levels of broadband
availability and competition are surrounded by other zip codes with similar values.
These regions are largely devoid of broadband options and are primarily located in
the most rural and remote areas of the United States.

. Low-high “islands of inequity’: Where zip codes displaying low levels of broadband
availability and competition are surrounded by zip codes displaying relatively high val-
ues. These locations are typically found adjacent to, or mside of, the broadband core
zones.

4. High-low “islands of availability”: Where zip codes displaying high levels of broadband
availability and competition are surrounded by zip codes displaying relatively low lev-
els. These locations are scattered throughout the U.S., with many of them found on the
outskirts of MSAs or CMSAs.
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Fig. 4. Broadband core. Fig. 6. Broadband periphery.




Fig. 8. Islands of availability.
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Remote detection of small wetlands in the Atlantic coastal plain of North America:
Local relief models, ground validation, and high-throughput computing

Paul B. Leonard **, Robert F. Baldwin?, Jessica A. Homyack®, T. Bently Wigley €

*School of Agricultural Forest, and Environmental Sdences, Clemson University, Clemson, SC 29634, USA
" Weyerhaueser NR Company, Vanceboro, NC 28586, USA
“National Council for Air and Stream Improvement Inc., (emson, SC 29634, USA

ARTICLE INFO ABSTRACT
Artide history: Isolated wetlands are ecologically important freshwater ecosystems that occur frequently throughout the
Received 17 May 2012 Atlantic coastal plain ecoregions of North America. Known to support 86 species recognized by the US

Received in revised form 7 July 2012
Accepted 24 July 2012
Available online 24 August 2012

Fish and Wildlife Service as threatened or endangered, isolated wetlands are a conservation priority in
the United States and elsewhere. They are often obscure and methods to detect them at the spatial scales
necessary for systematic conservation planning and forest management have been time consuming, cost
ineffective, or too coarse-filter. To fill existing information gaps and develop a repeatable, high-resolution
methodology, we subjected LIDAR elevation data to custom relief models designed to elucidate fine-scale
geomorphology, specifically small, localized changes in concavity, as a location predictor. Because fine

Keywords:
Isolated wetlands
Ephemeral wetlands

LiDAR grain size and large spatial extent can impose processing limits in landscape-level analysis, we executed
High-throughput computing our workflow in a high-throughput computing (HTC) environment, which achieved a 91 x time-savings
Sustainable forestry certification over our 55,000 ha study area. We conducted field validation at 114 randomly selected sites to measure

model commission ( 14.9%), approximate omission (5.3%) error rates and estimate wetland boundaries.
Depressional wetlands predicted in this study (n=4610) were mostly small (x = 0.37 + 0.69 ha) and pre-
viously unmapped sites. The mapping accuracy of this effort ( 85.1%) suggests that local relief models cap-
tured slight geomorphologic changes that successfully predict wetland boundaries in low-relief
ecosystems. Many small wetlands are centers of biodiversity in forested landscapes and such analyses

will provide information and improved methods for landscape-scale management and conservation.
& 1) Fleavier RV _All richtc recerved




3.1. Interpretation of LISA clusters

Based on model outputs, we describe the five aforementioned

possible outcomes (i.e., cluster types) from LISA analysis (spatially
autocorrelated LRM results), the implication of each cluster type,
and the possible landforms delineated by each.

1.

LrLr clusters were the most likely predictor of small, depres-
sional wetlands. These points fell inside a depression and were
surrounded by similar points.

. LrHr clusters most obviously delineated ditches, but also

described skidder ruts, small narrow pools (e.g., depressions
immediately abutting convex, planted beds), coves, or spill
points, which connected a larger complex of wetlands. The
study area was highly intersected with a network of drainage
ditches and points falling inside these areas created linear clus-
ters while most surrounding points fell outside of a ditch.

. Hrlr clusters were around the boundaries of depressional areas

where high-relief areas were surrounded by low-relief. No error
sites contained these clusters although they may be found in
small peninsulas, hummocks, or islands of vegetation com-
monly seen in pine flats.

. HrHr clusters signified large flat areas with little micro-relief.

Only one ground-verified wetland (1%) displayed this type of
cluster and it was much larger (>0.10 ha) than targeted features
although still omitted from NWI. This particular omission sug-
gests the selected neighborhood may have been too small to
correctly characterize some wetlands of this size (e.g., large
pine flats).

. NA clusters were typically found in areas where local relief val-

ues were >1 or where points displayed a non-significant, non-
autocorrelated spatial arrangement. One of three omitted sites
displayed this clustering. This inundated area was part of a lar-
ger pine flat wetland, correctly mapped nearby and likely
hydrologically connected by an overspill point.
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y-based wetland models with the National Wetlands Inventory. For the same scene, (A) LiDAR-derived tof
sive (i.e., high commission) compared to (B) LIiDAR-derived local relief model. Frame (C) illustrates omissio
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Spatial patterns of malaria in the Amazon: Implications for
surveillance and targeted interventions

. “ . a3k . b . ~
Marcia Caldas de Castro™™, Diana Oya Sawyer’, Burton H. Singer®

Abstract

A measure of local spatial association, G} (d), is applied to test for the presence of malaria clusters in a colonization area
in the Brazilian Amazon. Clusters of high and low malaria rates at different moments in time are identified. They suggest
unambiguous spatial patterns of transmission, most likely linked to the social and natural habitat. Results imply that a
comprehensive identification of the determinants of malaria transmission requires a spatial framework of analysis, and that
control strategies must be spatially targeted and guided by a surveillance system that constantly learns the specificities of

local transmission and adapts interventions to them.



Clustering pattern:
Significant clusters of low malaria rates
] Not significant for clustering

[ Protected forest reserves & Machadinho River

B Significant clusters of high malaria rate:
(] Not occupied at the time of the surveys

Fig. 2. Statistical significance of the G} (d) statistic (d = 3500 m)—Machadinho, 1985/1995




Besides facilitating the identification of
clusters, we argue that the observed
trajectories of the Gi* statistic at different
distances can.reveal.the patterns.of malaria - .
transmission, and the importance of choosing
the most appropriate distance. Next we show
a series of graphs and maps that highlight
the trajectories of the Gi* statistic for
distances ranging from 500 to 8000 m. Each
line in the graph represents the trajectory of
Gi* values for one single plot, and the thick
black lines are the cutoff values at a 5% level
given by the FDR procedure for multiple
testing_ Fig. 3. G}(d) trajectories for Tract 1-—Machadinho, 1986.
Fig. 3 shows the trajectories for Tract 1 in 1986. A few plots are associated with a
downward pattern (darker lines), and they are all located in the Southeastern

portion of Tract 1. In fact, this is the area where the small cluster of low malaria
rates is

observed in that year, with an average rate slightly above 8%. The remaining plots
in Tract 1 reveal an upward trend in the local statistic, suggesting that as distance
increases the additional plots added to the neighborhood contribute to the pattern of
clustering of high malaria rates in the area. The cloud of increasing lines is an
indication of the dramatic increase of malaria transmission registered in
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Two patterns are observed .
for Tract 2 in 1986, as .

shown in Fig. 4. The first is a a

tendency for clustering ~ 2

of low values; represented - N j P=""'\‘r‘5~*”‘:,“ NS
by graph (a) and given by . ' ' S
plots colored as light gray in 6

the map. The few lines B e 1500 500 3500 4500 5500 6000 7800

that after a certain distance : Distance (meters)

show an increase in the
indicator are associated with
locations closer to the
border between Tracts 1 and
2. So, as distance
increases, the set of
neighbors for these plots will

include locations in Tract 1 T s (a0

that have very high rates Fig. 4. G(d) trajectories for Tract 2—Machadinho, 1986,
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of malaria, changing the direction of the statistic. The second pattern, shown in graph (b) and
associated with plots colored as dark gray in the map, has the opposite behavior. The tendency for
clustering around high values is mainly restricted to the border between Tracts 1 and 2. Both
graphs suggest a threshold at 3500 m, which is the distance used to compute the Gi statistic.
Although this is by no means a proof that the correct distance was chosen, it is encouraging to
detect underlying spatial processes acting at that distance.






Applied Geography

Volume 40, June 2013, Pages 161-170

A GIS-based risk rating of forest insect outbreaks using aerial
overview surveys and the local Moran's | statistic

tson<, Trisalyn A. Nelsond

Abstract

The objective of this study is to provide an approach for assessing the short-term risk of mountain pine
beetle Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae) attack over large forested areas based
on the spatial-temporal behavior of beetle spread. This is accomplished by integrating GIS, aerial overview
surveys, and local indicators of spatial association (LISA) in order to measure the spatial relationships of




Class 3
(Increase)

-1.0

Standardized Severity Mean of
Neighbourhood at time +1

-

Class 1
(Null)

Standardized Severity at time ¢

Fig. 3 A conceptual schematic of the Moran's | i scatterplot. Arrows within each class represents the direction of Moran's | values
from 0 to 1. Each quadrat represents the relationship between observation i and its neighborhood. In addition, each qua...

A GIS-based risk rating of forest insect outbreaks using aerial overview surveys and the local Moran's | statistic
Applied Geography Volume 40 2013 161 - 170

http://dx.doi.org/10.1016/j.apgeog.2013.02.011



LISA Classes

[ ] Class 1: Null

B Class 2: Decline
D Class 3: Increase

- Class 4: Constant




Bivariate LISA example






» Where are incidences of cancer higher than other
places!?

» Where are the hot spots for crime, 91 | emergency calls,
fires?

» Where are intersections that have high numbers of
traffic accidents!?




Legend (in inches)
[] Under36 [] 52t056
[] 36tcd0 [ S6to60
[] 40tcdd [ 60tobd

[ #4048 [ Above6d

B 48t052

Average Annual Precipitation

West Virginia

N plants = 36.75 + (0.5) precip

This is a map of annual precipitation averaged over
the period 1961-1990. Station observations were
collected from the NOAA Cooperative and
USDA-NRCS SnoTel networks, plus other state and
local networks. The PRISM modeling systern was
used to create the gridded estimates from which this
map was made. The size of each grid pixel is
approximately 4x4 lan. Support was provided by
the NRCS Water and Climate Center.

. . The latest PRISM digital data
SCAS web site at be obtamed from the Clrmate

. - Source at
http:#hsrarer ocs orst edwprism hitp:/ climatesource com

Copyright 2000 by Spatial Clirate Analysis Service,
Oregon State University




Addresses the non-stationarity directly

» Allows the relationships to vary over space, i.e., fs do not
need to be the same

» ¥ =P t LX)t Pixgit...... * OiXni T E

Instead of remaining the same everywhere, s now vary by
locations (i) (and R?)



GWR kernel

X regreséion point
* data point X regression point
® data point

GWR with fixed kernel GWR with adaptive kernel

From Fotheringham, Brundson and Charlton. 2002. Geographically Weighted Regression

Points are weighted based on distance from center of kernel
e.g. Gaussian kernel where weighting is given by:
w,(g) = exp[-1/2(d,/b)* where b is bandwidth



OLS coefficient (slope)




accounted for by the regression,

2 _ regression SS _2()?1 _ )_/‘)2

total SS 2 (Yi - I—/)z
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Regression SS
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Homicide rate = f(pop density)



Graph of Nat_proj_uniq

Scatter Plot
- Trend




cessing  Customize -
18 a7 o \ Geographically Weighted Regression Q@ a
) v —

> “ £ Input features - Geographically
|Nat _proj_uniq Ll B‘ Weig hted
Dependent variable ; Reg ression
HRS0 v
Explanatory variable(s) . Performs Geographically

~ Weighted Regression
(GWR), a local form of
DhLD i linear regression used to
model spatially varying
i relationships.

Bo
Output feature class
C:\Documents and Settings\jamS889\My DocumentsiarcGIS\Default.gdb\GeographicallyWeightedRearn B +
Kernel type .
FIXED v
. B1
Bandwidth method _ Populati
AICc 3 opulation
Distance {optional)
+
Number of neighbors {optional)
YWeights {optional) _ B2 v
M € >

QK ] [ Cancel ] [Environments...] [ << Hide Help ] [ Tool Help ]




)

0.7002

=
O
o
O
©
I
O
O

Homicide rate = f(population density

GeographicallyWeightedRegression3
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More GWR info

http://www.st-andrews.ac.uk/geoinformatics/gwr/
Fotheringham et al, 2002
Foody, 2004

Osborne, et al. 2007: Non-stationarity and local
approaches to modelling the distributions of wildlife.

Diversity and Distributions 13, 313-23.




Example applications:



Foody, G. M. (2004b) Spatial nonstationarity and scale-dependency in the
relationship between species richness and environmental determinants for the

sub-Saharan endemic avifauna. Global Ecology and Biogeography, 13,

Sub-Saharan Africa:
(bird) Species richness = f(NDVI, Temp, Precip)




Figure 1 Amount of variance explained (R
by relationships between species richness and
the three explanatory variables alone and
combined, determined using all cases with
paired species richness and environmental data
(n =1729). The GWR analyses were
undertaken with four different bandwidths.

In each GWR analysis the model parameters
were significantly nonstationary (Monte Carlo
permutation test, P < 0.0001). Every GWR
model also had a lower Akaike Information
Criterion than the corresponding global model
(minimum difference = 735.98) indicating a
closer fit to the data, accounting for the
differences in the complexity and degrees

of freedom of the models compared. For
comparative purposes the magnitude of the

R? estimated from the corresponding
conventional (global) regression analyses

are indicated by horizontal lines.

Rz

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

0.00

B Combined E NDVI O Temperature [ Precipitation

R? from global model:

» Combined

» NDVI

N Temperature

1 3 5
Bandwidth (°)

Precipitation




Figure 3 Spatial variation in the slope of
the relationship between species richness and
total annual precipitation at four bandwidths

(b). Spatial detail increases with a decrease in
bandwidth. The effect of scale variation is

evident in the relationship between bandwidth
and the estimate of the slope parameter ()
highlighted for six locations. Those selected
include examples that are uni-directionally
positive (site 2), uni-directionally negative
(sites 4 and 6), relatively stable (site 1) as well
as a location at which there is a major change
in the direction and magnitude of the estimate
with scale change (site 5), with the estimate
for each location gradually converging towards
the global model estimate of 0.1016. For the
images depicting the slope of a relationship, a
common grey-scale has been used throughout
and the background set to mid-grey.

Bandwidth (°)
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Testing the Water-Energy Theory on American Palms
(Arecaceae) Using Geographically Weighted Regression

Wolf L. Eiserhardt’, Stine Bjorholm', Jens-Christian Svenning’, Thiago F. Rangel?, Henrik Balslev'*

1 Ecoinformatics and Biodiversity Group, Department of Bioscience, Aarhus University, Aarhus, Denmark, 2 Departamento de Ecologia, ICB, Universidade Federal de Goias,
Goiania, GO, Brazil

Abstract

Water and energy have emerged as the best contemporary environmental correlates of broad-scale species richness
patterns. A corollary hypothesis of water—energy dynamics theory is that the influence of water decreases and the influence
of energy increases with absolute latitude. We report the first use of geographically weighted regression for testing this
hypothesis on a continuous species richness gradient that is entirely located within the tropics and subtropics. The dataset
was divided into northem and southemn hemispheric portions to test whether predictor shifts are more pronounced in the
less oceanic northern hemisphere. American palms (Arecaceae, n =547 spp.), whose species richness and distributions are
known to respond strongly to water and energy, were used as a model group. The ability of water and energy to explain
palm species richness was quantified locally at different spatial scales and regressed on latitude. Clear latitudinal trends in
agreement with water-energy dynamics theory were found, but the results did not differ qualitatively between
hemispheres. Strong inherent spatial autocorrelation in local modeling results and collinearity of water and energy variables
were identified as important methodological challenges. We overcame these problems by using simultaneous
autoregressive models and variation partitioning. Our results show that the ability of water and energy to explain species
richness changes not only across large climatic gradients spanning tropical to temperate or arctic zones but also within
megathermal climates, at least for strictly tropical taxa such as palms. This finding suggests that the predictor shifts are
related to gradual latitudinal changes in ambient energy (related to solar flux input) rather than to abrupt transitions at
specific latitudes, such as the occurrence of frost.

Citation: Eiserhardt WL, Bjorholm S, Svenning J-C, Rangel TF, Balslev H (2011) Testing the Water-Energy Theory on American Palms (Arecaceae) Using
Geographically Weighted Regression. PLoS ONE 6(11): e27027. doi:10.1371/joumal .pone. 0027027

“There was strong spatial heterogeneity in palm richness—climate relationships, as
evidenced by a minimum AICC difference between GWR and OLS models of AAIC,




action of variation uniquely explained by the water variables (C) and energy variables (D)
tained from variation partitioning

Figure 2. Variation in American palm species richness locally explained by water and energy. Local R’ values obtained from
geographically weighted regression (GWR) of palm species richness on annual precipitation, precipitation of the driest month, and water deficit (A)
and mean annual temperature, minimum temperature of the coldest month, and potential evapotranspiration (B). Fraction of variation uniquely
explained by the water variables (C) and energy variables (D) obtained from variation partitioning. The green circle in (A) shows the GWR bandwidth
for a cell situated at the equator.

doi:10.1371/journal.pone.0027027.g002




Figure 3. Latitudinal trends in
the ability of water and
energy to explain American
palm species richness.

The amount of variation in
palm species richness locally
explained by energy
variables (A-D) and water
variables (E-G) plotted
against latitude. A, B: total
energy (Re). C, D: pure
energy (Rpe). E, F: total
water (Rw). G, H: pure water
(Rpw). Regression lines
obtained from OLS

Hik regression (black) and SAR
— e SIS | cgression (red).
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Spatial nonstationarity and the scale of species—environment
relationships in the Mojave Desert, California, USA

Jennifer A. Miller** and Robert Q. Hanham"
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Species distribution models (SDM) have become a fertile area of research interest at the
confluence of spatial ecology and GIScience and have been used to study a wide range of
biogeographical phenomena, including invasive specaes, vector-borne discases, and
biological diversity. Scale 1s one of the most important considerations m any spatial
analysis study because different spatial pattems emerge at different scales. An issue
related to the “extent’ concept of scale that has more recently been recognized as
important 1s spatial nonstationanty, which exists when processes or models of processes
vary across space. This research examined the scale of species—environment relationships
by a relatively new (in SDM) statistical method, geographically weighted regression
(GWR). We tested four different types of species and 10 different types of environmental
(chimate and topography) vanables in univariate GWR models to explore how stationar-
ity and explanatory power vaned with scale (as a function of GWR bandwidth size). The
results suggest that the scale of species—environment relationships vanes for both
different types of species and different types of environmental vanables. The two metrics
used here — statonanty index and explained variance —did not show congruity in terms of
a ‘characteristic scale.” Species’ relationships with climate and elevation vanables
became stationary at broader scales, and 1in some cases the models did not become
stationary at the largest bandwidth tested. The complex topographic vanables used
here operate at finer scales and were often stationary across all scales or became
stationary at small bandwidths. In addition to bemg instrumental for examining the
effects of scale on spatial nonstationarity and a model’s explanatory ability, GWR can
also be used to explore potential geographical factors that result in nonstationanty.

Keywords: species distnbution model; nonstationarity; scale; geographically weighted
regression
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Figure 3. Coefficients for global and GWR models (Imear only). GWR model coefficients are given
as ranges at the smallest available bandwidth. Global coefficient values are indicated by black circles.
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Exploring spatial non-stationarity of fisheries survey data using
geographically weighted regression (GWR): an example from the
Northwest Atlantic

Matthew J. S. Windle, George A. Rose, Rodolphe Devillers, and Marie-Josée Fortin

Windle, M. |. S, Rose, G. A, Devillers, R, and Fortin, M-). 2010. Exploring spatial non-stationarity of fisheries survey data using geographically
weighted regresson (GWR): an example from the Northwest Atlantic. - ICES Journal of Marine Science, 67: 145~ 154.

Analyses of fisheries data have traditionally been performed under the implicit assumption that ecological relationships do not vary
within management areas (i.e. assuming spatially stationary processes). We question this assumption using a local modelling technique,
geographically weighted regression (GWR), not previously used in fisheries analyses. Qutputs of GWR are compared with those
of global logistic regression and generalzed additive models (GAMs) in predicting the distribution of northern cod off
Newfoundland, Canada, based on environmental (temperature and distance from shore) and biological factors (snow crab and north-
ern shrimp) from 2001. Results from the GWR models explained significantly more variability than the global logistic and GAM
regressions, as shown by goodness-of-fit tests and a reduction in the spatial autocorrelation of model residuals. GWR results revealed
spatial regions in the relationships between cod and explanatory variables and that the significance and direction of these relationships
varied locally. A k-means cluster analysis based on GWR t-values was used to delineate distinct zones of species—environment relation-
ships. The advantages and limitations of GWR are discussed in terms of potential application to fisheries ecology.

Keywords: Atlantic cod, fisheries ecology, generalized additive models, geographically weighted regression, logistic regression, non-stationarity,
Northwest Atlantic, spatial modelling.
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Figure 5: GWR-derived local coefficient estimates for (a) temperature, (b) distance from shore, and (c) snow
crab and (d) shrimp as predictors of cod presence/absence in the 2J3KL region for autumn 2001. Positive
values are shown as filled circles and negative values as unfilled circles. A significant threshold of 95% was
used to mask out points where the relationship between cod and the predictor variable was not significant

(plus signs).
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Table 4: Mean GWR parameter estimates from the model of 2J3KL cod
distribution in autumn 2001 (212 km bandwidth) for each group identified by
the k-means cluster analyses (s.d. in parentheses).







Inference with local statistics

Random null hypothesis means z scores > |.96 and <

-1.96 are unusual

Significance Level Critical Value
(p-value) (z-score)
0.01 < -2.58
0.05 -2.58 --1.96
0.10 -1.96 --1.65
— -1.65-1.65
0.10 1.65-1.96
0.05 1.96 - 2.58
0.01 > 258

(Random)

Significant Significant

[ | |
0 0.05 0.01 p-values
5 1.96 2.58 Z-Scores
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0.01 005 010 0.1
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Inference with local statistics

Random null hypothesis means z scores > |.96 and <
-1.96 are unusual

Expected G. is the proportion of the study area
accounted for by the neighborhood of location i

» (under assumption of random distribution of attribute values...)



How many “statistically significant” hot or
cold spots are 1n this study area?



How many “statistically significant™” hot or
cold spots are 1n this study area?

2034/5226 = 39%

* Compared to CSR/IRP, but we already determined that
these data exhibit + SAC... (stat sig + Moran’s )

Statistical tests of local statistics are inherently
non-independent




How many “statistically significant™” hot or
cold spots are 1n this study area?

2034/5226 = 39%

Statistical tests of local statistics are inherently
non-independent

Some solutions/strategies:

» Bonferroni correction
a’ = aln;a’= 0.05/3085 = 0.0000162; z=4.15

(http://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html)

Conditional Monte Carlo simulations (of attribute values) to determine
pseudosignificance values



Simulation to get distribution of (random) values

Mean nearest-neighbor distance

Figure 4.20 Results of a simulation of IRP/CSR for 12 events {(compare Table




