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Input:  

For practicing we will use the dataset on cellular heat stress from the paper by Beckham et al (2010). In 
the “heat” treatment the cells received a severe 20-minute heat stress at 45oC and were sampled 1 and 3 
hours later. In the “pre-stress” treatment the cells were first heated for 30 minutes at 43oC and 4 hours 
later subjected to the same severe heat stress as above. In the control the cells were neither pre-stressed 
nor heated. Since the control has no time dimension we cannot run a fully crossed 2-way design with 
factors “treatment” and “time”; instead it makes sense to run a one-way design comparing all the 
treatments to the untreated control. Such a design, involving a global control and a series of treatments, 
is one of the most typical in biomedical qPCR experiments. 

Two input files are required; the main one with raw qPCR data and another with efficiencies 
(amplification factor per PCR cycle) for each target. The input files can be assembled in excel, exported 
as comma-separated values (.csv format) and read into R using the generic read.csv() function. 
Beckham et al data and amplification efficiencies are included with the MCMC.qpcr package; to load 
them, say: 
data(beckham.data) 
data(beckham.eff) 

The main data table (beckham.data) looks like this: 
sample       tr time gapdh hsp110 hspb  egr gadd dnajb1 dnajb4  atf dnaja4  fos 
     a     heat   1h  15.0     NA 21.7 30.6 22.5     NA   23.3   NA   29.9 31.8 
     a     heat   1h  15.3   22.9 22.4 29.3 22.9   24.4   24.8 29.4   29.1 30.8 
     a     heat   1h  15.4   21.8   NA 28.5   NA   23.6     NA 28.1   29.8 29.9 
     i     heat   3h  15.7     NA 22.3   NA 21.6   23.0   24.7 28.6   28.1 29.0 
     i     heat   3h    NA   21.7   NA 23.6 23.2   21.9   26.4 27.7   28.2 28.9 
     i     heat   3h  15.6   21.1 22.8 23.5 22.0   22.2   25.6 27.2   27.6 28.7 
... 
     m  control   0h    NA   19.7 23.1 25.9 22.5   21.6   24.1 28.4   26.4 28.4 
     m  control   0h  15.0   19.7 22.1 24.4 22.0   21.5   24.5 28.2   27.7 28.4 
     m  control   0h  14.3     NA 21.2   NA 21.4     NA   23.9   NA   26.4   NA 
... 

The “sample” column is required; it denotes biological replicates (cDNA preparations). “tr” and “time” 
are experimental conditions (factors). The rest of columns are raw Cq values (they might be called Ct or 
Cp depending on your qPCR instrument), one column per gene. Missing data are coded as NA; the trials 
that failed to amplify because the target concentration was too low should be coded -1 (this will be 
informative for the method). Very importantly, technical replicates should not be averaged but all listed 
in the table. For example, the first three lines in the table above are technical replicates, i.e, the results 
obtained for the same cDNA sample. 

The efficiencies are a two-column table giving gene-efficiency correspondence: 
    gene efficiency 
   atf      2.00 
 gapdh      1.99 
dnajb1      1.99 
dnajb4      1.99 
  gadd      1.99 
  hspb      1.99 
   egr      1.95 
... 
 
There must be an efficiency entry for every gene. If you don’t have them experimentally determined for 
some genes but still want to run the method just to try it out, use 2.00. 
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Recalculating the data into molecule counts and reformatting: 

One of the central ideas of the MCMC.qpcr methodology is to treat qPCR data as molecule count data. 
Function cq2counts() does the reformatting. It needs to be told the name of the main dataset, the name 
of efficiencies dataset, and also which columns correspond to the actual qPCR data for genes  
(‘genecols‘) and which columns contain experimental conditions (‘condcols‘): 
qs=cq2counts(data=beckham.data, effic=beckham.eff, genecols=c(4:13),condcols=c(1:3)) 

Then we will combine the experimental factors (tr and time) into a single factor, which we will call 
treatment.time in the reformatted qs dataset 1 : 
qs$treatment.time=as.factor(paste(qs$tr,qs$time,sep=".")) 

Finally, we will specify our global control as the “reference” condition for model fitting using generic 
relevel() function  : 
qs$treatment.time=relevel(qs$treatment.time,ref="control.0h") 

 

Model fitting: 

By far the greatest advantage of MCMC.qpcr method is the possibility to perform the analysis without 
relying on “control genes” that are presumably stable. Under the current qPCR paradigm, the stability of 
control genes should be confirmed for each type of experiment (Vandesompele et al 2002). Dismissing 
the assumption of gene stability not only saves effort required to select control genes, but also makes the 
qPCR analysis fully objective, which is very important for biomedical applications. 

To fit a “naïve” model (assuming no control genes) using function mcmc.qpcr(), all we need to do is to 
specify the name of our dataset (qs) and experimental factors (‘fixed’ argument 2 ): 
naive=mcmc.qpcr(data=qs, fixed="treatment.time") 

The MCMC.qpcr package actually provides means to analyze data using control genes information, 
since any prior knowledge helps sharpen the Bayesian inference upon which the method relies. An 
“informed” model lets the user indicate control genes and specify their assumed degree of stability. The 
package even implements the “classic” analysis involving multi-gene normalization. Random blocking 
factors can also be specified. Read the long tutorial to learn more about these options. 

 

Extracting and plotting the results: 

For experimental designs involving a single multi-level factor (such as the Beckham et al dataset) or two 
fully crossed multi-level factors (such as the coral stress dataset described in the long tutorial), the 
easiest way to extract gene expression changes, calculate their statistical significance, and plot the results 
is to use the function HPDsummary(). To generate the line-and-points plot of the inferred transcript 
abundances with whiskers denoting 95% credible intervals, we only need to specify the name of the 
model and the name of the reformatted dataset (Fig.1): 
s1=HPDsummary(model=naive,data=qs) 

                                                
1 If you have a fully crossed two-way design rather than design with a single global control, do not 
combine your factors! 
2 For a fully crossed two-way design with two factors named, for example, “time” and “temperature”, 
specify fixed="time+temperature+time:temperature" in the call to mcmc.qpcr. 
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 In most cases of qRT-PCR, however, we are interested in visualizing not the absolute transcript 
abundances but changes in expression in response to experimental treatments. To produce a bar graph of 
such changes for our case, we need to run HPDsummary() function with an additional option 
‘relative=TRUE’, which will cause the function to display the changes relative to the control (Fig. 2): 

s0=HPDsummary(model=naive,data=qs,relative=TRUE) 

In addition to plotting, the function HPDsummary() returned bundles of data (we called them s1 and s0 
above) containing a table where the transcript abundances (in s1) or changes relative to the control (in 

Figure 2. HPDsummary() plot of inferred log2(fold changes) relative to the global control. 
 

 
Figure 1. HPDsummary() plot of inferred transcript abundances. By default the y-axis is scaled in log2 units. 
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s2) are listed for each gene for all treatments3, along with standard deviation of the posterior distribution 
and upper and lower 95% credible limits: 
s1$summary 

     gene treatment.time      mean        sd     lower     upper 
1     atf     control.0h  8.966396 0.4939060  8.055152  9.613877 
2     atf        heat.1h  8.569632 0.4658686  7.890858  9.308999 
3     atf        heat.3h  9.916381 0.4640932  9.195763 10.658059 
4     atf    pre.heat.1h 15.333001 0.3971188 14.737555 16.054843 
5     atf    pre.heat.3h 15.832027 0.4036264 15.240748 16.499968 
6  dnaja4     control.0h 10.182746 0.3849322  9.562955 10.771647 
7  dnaja4        heat.1h  8.558357 0.3643718  7.964796  9.132464 
8  dnaja4        heat.3h  9.877412 0.3783696  9.283415 10.443634 
9  dnaja4    pre.heat.1h 13.940327 0.4063985 13.273199 14.520066 
10 dnaja4    pre.heat.3h 14.597385 0.3195349 14.090571 15.136826 
... 

This table can be used for plotting results in a variety of ways using function summaryPlot() or directly 
using functions of the cutting-edge R graphics package, ggplot2, which is actually invoked by 
HPDsummary() and summaryPlot(). 

HPDsummary() also calculates all the pairwise differences between treatments and their statistical 
significances for each gene:  
s1$geneWise 
$atf 
             difference 
pvalue        control.0h     heat.1h   heat.3h pre.heat.1h pre.heat.3h 
  control.0h          NA -0.39676412 0.9499848   6.3666056   6.8656314 
  heat.1h      0.5720302          NA 1.3467490   6.7633697   7.2623955 
  heat.3h      0.1525220  0.04364789        NA   5.4166207   5.9156465 
  pre.heat.1h  0.0000000  0.00000000 0.0000000          NA   0.4990258 
  pre.heat.3h  0.0000000  0.00000000 0.0000000   0.3803415          NA  
 
$dnaja4 
             difference 
pvalue          control.0h     heat.1h       heat.3h pre.heat.1h pre.heat.3h 
  control.0h            NA -1.62438917 -3.053344e-01    3.757581   4.4146386 
  heat.1h     2.353268e-03          NA  1.319055e+00    5.381970   6.0390278 
  heat.3h     5.348679e-01  0.01553518            NA    4.062915   4.7199731 
  pre.heat.1h 1.528355e-11  0.00000000  4.900436e-11          NA   0.6570579 
  pre.heat.3h 0.000000e+00  0.00000000  0.000000e+00    0.228404          NA 
... 

The upper triangle of these matrices are log2(fold-differences) and the lower triangle are the 
corresponding p-values (zero means less than 1e-16). These results are directly reportable as 
supplementary information for a research paper.  

                                                
3 In a 2-way crossed design, all combinations of the two factors will be listed.  
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A Very Long Tutorial 4 

Coral stress-recovery experiment  

The exercises in this tutorial are based on the dataset ‘coral.stress’, provided with the package. The 
experiment that generated this dataset addressed the effects of heat-light stress and subsequent recovery 
on gene expression in a reef-building coral Porites astreoides (Kenkel et al. 2011). Briefly, eight 
individual coral colonies were fragmented into 4 pieces each and allowed to acclimatize in common 
benign conditions for four days. The next morning, two fragments of each colony were placed into a 
stressful environment (elevated heat and light). At midday on the same day, when the stress intensity 
was the highest, one stressed fragment and one control fragment (remaining in the benign conditions) 
were sampled, representing the first sampling timepoint. In the end of the same day, the second stressed 
fragment was put back into the benign environment for recovery. This fragment, along with the 
remaining control fragment, was sampled at midday on the following day (the second timepoint, 
corresponding to recovery).  Expression of 15 genes, 5 of which were putative control genes, was 
assayed by qRT-PCR on Roche LightCycler 480 instrument with SYBR detection. In the original paper 
(Kenkel et al. 2011), the analysis included correcting for amplification efficiencies, normalization by the 
3 genes that proved to me most stable according to geNorm test (Vandesompele et al. 2002), followed 
by linear mixed model analysis on a gene-by-gene basis (Poletto et al. 2006). 

This dataset is interesting from the analytical standpoint because of three reasons. First, one of the main 
effects of interest is the interaction term, Condition:Timepoint, describing the gene regulation in coral 
fragments that were first stressed and then allowed to recover. Evaluation of the interaction term 
necessitates the use of linear models or ANOVA rather than non-parametric methods (Steibel et al. 
2009). Second, the dataset includes an important random effect, the identity of the individual coral 
colony, potentially affecting the baseline level of expression of some genes, which prompts the use of a 
linear mixed model rather than a simple linear model. Finally, several genes were so down-regulated that 
they became undetectable by qRT-PCR in a considerable number of trials, precluding a straightforward 
use of log-transformation typical of qRT-PCR analysis (Vandesompele et al. 2002; Luu-The et al. 2005). 

Cq data format 

The main input is the table of raw Cq (“cycle of quantification” values, which may be called ‘Ct’ 
depending on the kind of qPCR instrument) containing columns of Cq values (one column per gene) and 
columns of conditions (fixed and random factors).  Gene and condition names should be given as 
column titles. In addition to normal Cq values, the Cq columns may contain entries ‘NA’ (missing data, 
which might be entered because the observed amplification product did not have the expected melting 
peak) and ‘-1’ (no amplification  - presumably because there was not a single target molecule in the 
analyzed aliquot). Technical replicates should not be averaged but instead listed as separate rows. To 
view the format, use head() to print out the first ten lines of the ‘coral.stress’ dataset: 
library(MCMC.qpcr) 
data(coral.stress)  
head(coral.stress) 

  sample individual condition timepoint hsp16 actin   adk    c3 chrom clect eif3h 
1      1         s1   control       one 36.62 22.44 31.54 29.57    NA 33.93 31.69 
2      1         s1   control       one -1.00 22.42 31.24 28.83 37.76 32.99 32.02 
3      2         s1      heat       one 26.89 23.27 30.92 27.98 30.70 34.74 29.65 
4      2         s1      heat       one 27.08 23.34 31.71 28.06 31.28 33.95 29.73 
5      3         s2   control       one    NA 23.24 33.22 27.08 34.95    NA 31.41 
6      3         s2   control       one -1.00 23.94 33.13 27.73 34.70 -1.00 32.90 

                                                
4 The numbering of figures restarts here… 
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Here, the first four columns denote random and fixed factors. Rows with exact same entries in these four 
columns are technical replicates (two per sample in this case). It is OK to have occasional dropouts of 
technical replicates, as long as the dropout rate is not correlated with any of the factors.  

 One critical random factor for the analysis is ‘sample’, denoting individual cDNA preparations. This 
factor will be used to infer different template loadings in qPCR reactions, which serves as a functional 
equivalent of normalization in qRT-PCR. The ‘sample’ column must be present in the table, does not 
matter in which position.  

Other random factors would typically be grouping factors, such as block, plot, tank, cage, genotype, etc. 
In this case, the ‘individual’ random effect denotes the coral colony that was fragmented into clonal 
pieces that were subject to treatments.  

Finally, the experimental design includes two fixed effects, ‘condition’ (‘control’ or ‘heat ’) and 
‘timepoint ‘ (‘one’ corresponding to the day of stress, ‘two’ corresponding to the following day when the 
corals were allowed to recover). 

Such a table can be assembled in spreadsheet editor software, such as MS Excel, from raw Cq data 
exported by the qPCR instrument. While naming the factors and genes, remember that in R the column 
names cannot start with a number and cannot contain spaces (or rather, spaces will be converted to full 
stops, ‘.’). Save the table as “comma-delimited values” (with the extension .csv), and use R function 
read.csv() to import it into R: 
mydata=read.csv("name-of-my-file.csv") 
head(mydata)  # to see if the dataset was imported correctly 

Amplification efficiencies 

The second input is a two-column table of qPCR efficiencies for each gene. The efficiency (E) is the 
amplification factor per PCR cycle, and is needed for proper Cq to counts conversion. To estimate E, we 
recommend the dilution series method (Pfaffl 2001), where a series of 8-10 2-fold template dilutions is 
analyzed by qPCR. The template should be a previously amplified fragment, pre-diluted 100,000-fold to 
make Cq values fall within the realistic range. The package contains a dataset of dilution series results 
called ‘dilutions’ and a function PrimEff() that would calculate amplification efficiencies, plot the 
regressions (Fig. 1) and summarize the results in a form of a table:  
 
data(dilutions) 
dilutions 

           dna    cq  gene 
1  1.000000000 19.80 eif3h 
2  1.000000000 19.75 eif3h 
3  1.000000000 19.99 eif3h 
4  1.000000000 19.99 eif3h 
5  1.000000000 19.78 eif3h 
6  1.000000000 20.06 eif3h 
7  0.250000000 21.73 eif3h 
8  0.250000000 21.88 eif3h 
9  0.250000000 21.82 eif3h 
10 0.250000000 21.78 eif3h 
11 0.250000000 22.01 eif3h 
12 0.250000000 21.80 eif3h 
13 0.062500000 24.10 eif3h 
14 0.062500000 23.92 eif3h 
15 0.062500000 24.18 eif3h 
16 0.062500000 24.27 eif3h 
... 
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PrimEff(dilutions) # Fig. 1 
   gene     E E.minus.sd E.plus.sd intercept 
1 chrom 2.017       2.00      2.03      18.6 
2 eif3h 1.900       1.89      1.91      19.8 

 
The input table for this analysis can once again be created in Excel, and should have the same order of 
the columns as the ‘dilutions’ example: first is RNA concentration (which may be arbitrary, 1/[dilution 
factor], as it is here), second is Cq (or Ct), third is gene name. Names of the columns do not matter as 
long as their order is the same. The input may contain concatenated data for several genes. 

When all the gene targets are analyzed for qPCR efficiency, the results should be put together in a table 
that will be used by MCMC.qpcr analysis: 
data(amp.eff) 
amp.eff 

    gene efficiency  Cq1 
1  hsp16       1.90   NA 
2  actin       1.95 36.5 
3    adk       1.99 36.8 
4     c3       1.99   NA 
5  chrom       1.98 36.5 
6  eif3h       1.90 38.0 
7  g3pdh       1.85 39.2 
8   gsp2       1.96 36.7 
9  hsp60       1.93 37.3 
10 hsp90       1.91 38.2 
11   nd5       1.97 36.2 
12 rpl11       1.95 37.8 
13 spon2       2.00 36.5 
14  ubl3       2.00   NA 
15 tgoln       2.00   NA 
16  r18s       1.93   NA 
17 clect       2.00   NA 

There are two obligatory columns: gene name should appear in the first column, while E should be in the 
second column (the column names don’t matter). The third column is optional and contains an 
experimentally estimated Cq of a single molecule of the target. The table should contain all the genes 
that feature in the main Cq table. It is perhaps needless to say that the gene names must be spelled 

 
Figure 1. PrimEff() plots of regression slopes and PCR efficiencies based on dilution series. 
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exactly the same way in both tables (remember that R is case-sensitive). 

Cq to counts conversion 

This is the key transformation in the whole methodology, which makes it possible to apply generalized 
linear model to account for higher variation at the lower end of target abundances, and also to properly 
derive information from empty qPCR trials.  

The conversion to approximate counts uses a simple formula: 

Count = E (Cq1 – Cq) , rounded to integer ,       (1) 

 where E is the efficiency of amplification and Cq1 is the the number of qPCR cycles required to detect a 
single target molecule. Cq1 is the feature of the qPCR assay when run on a particular instrument, and its 
exact determination requires considerable effort. Fortunately, at least the 11 genes that we examined in 
detail turned out to have very similar Cq1, within 36-39 range, and we were able to demonstrate that the 
choice of Cq1 does not affect the results of relative quantification much as long as it is within this range. 
Assuming the same average-size Cq1= 37 for all genes resulted in good model fit and exactly the same 
results as the analysis with more accurately approximated Cq1. We therefore believe that Cq1=37 will 
work well for most tasks, as long as the goal is relative rather than absolute quantification. A more 
sophisticated way of specifying Cq1 is to approximate it based on the efficiency (E) using empirical 
formula Cq1 = 79 - 21.5E, but we cannot guarantee that the formula, which we developed for 
LightCycler 480, would be applicable to other instruments.  

The function that performs the conversion is cq2counts(). In addition to the names of the main Cq 
dataset (‘data’ argument) and the name of amplification efficiencies dataset (‘effic’ argument), it also 
needs to be told which columns contain Cq values (‘genecols’ argument) and which columns correspond 
to conditions (‘condcols’ argument). The method of Cq1 setting is determined by ‘Cq1’ parameter 
(“table” for experimentally estimated Cq1 listed as the third column in the efficiency table, “formula” 
for formula-based approximation, and any number to fix Cq1 for all genes at this value). We will specify 
Cq1=37: 
data(coral.stress) 
data(amp.eff) 
dd=cq2counts( 
      data=coral.stress, 
      genecols=c(5:19),  # where the Cq data are in the data table 
      condcols=c(1:4),   # which columns contain factors   
      effic=amp.eff, 
      Cq1=37 
      ) 
head(dd) 

   count  gene sample individual condition timepoint 
1      1 hsp16      1         s1   control       one 
2      0 hsp16      1         s1   control       one 
3    658 hsp16      2         s1      heat       one 
4    582 hsp16      2         s1      heat       one 
5     NA hsp16      3         s2   control       one 
6      0 hsp16      3         s2   control       one 
7    160 hsp16      4         s2      heat       one 
8    142 hsp16      4         s2      heat       one 
9      7 hsp16      5         s4   control       one 
10     4 hsp16      5         s4   control       one 

The resulting data frame (dd) has the raw Cq values efficiency-corrected and transformed into counts 
based on Cq1 = 37, also have all the counts “stacked” so they all are now in a single column. 
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The qRT-PCR model 

Below I use the coral example to explain, in colloquial terms, how the qRT-PCR model is constructed. A 
reader inclined towards more statistically rigorous notation and language is encouraged to study our 
original paper introducing the method (Matz, Wright, and Scott, 2013). The model has a single response 
variable, the natural logarithm of transcript counting rate. The most basic explanatory variable in the 
model is ‘gene’, which accounts for different levels of expression between genes: 

ln(rate) ~ gene . 

 Such a primitive model, however, would be of little value since in qRT-PCR we are typically not 
interested in difference in expression between genes, but want to learn how the expression of each gene 
varies depending on the experimental treatments. To find this out, we augment our model with a series 
of terms describing gene-specific effects of experimental treatments. In our coral experiment, we have 
two treatments (or, using linear modeling terminology, factors): Condition with levels “control” and 
“heat” and Timepoint with levels “one” and “two”, plus their interaction (i.e., we suspect that there 
might be some Timepoint-specific effects of Condition). This experimental design is incorporated into 
the model as follows:  

ln(rate) ~ gene + gene:Condition + gene:Timepoint + gene:Timepoint:Condition , 

where the colon indicates interaction, essentially standing for “-specific effect of “. The model is fully 
flexible, not being limited to a particular number of factors, number of levels within each factor, or 
presence-absence of interactions.  

Even though our model specification now seems to contain all the terms we want to estimate, we must 
take care of other important sources of variation that, while being of no real interest to us, must be taken 
into account to ensure that the model is accurate and powerful. The most important of these is the 
random effect of the biological replicate (i.e., an individual RNA sample), accounting for the variation in 
quality and/or quantity of biological material among samples. The designation “random effect” implies 
that we are not interested in actual estimates of each sample’s quality or quantity, but simply want to 
partition out the corresponding variance.  Random effects are imagined as random variables drawn from 
an underlying distribution the variance of which the model will estimate. In the simplified notation that 
we use throughout this section, we will italicize the names of random factors, to discriminate them from 
the factors of primary interest (“fixed factors”) that we discussed before: 

ln(rate) ~ gene + gene:Condition + gene:Timepoint + gene:Timepoint:Condition + sample . 

Note that, since the variation in cDNA quality and/or quantity affects all genes in a sample in the same 
way, this random factor is not gene-specific. The introduction of this random factor into the qRT-PCR 
model was perhaps the most important innovation in the model of Steibel et al (2009). 

The experimental design might have involved additional “grouping factors” that are not directly related 
to the experimental treatments being studied but still might be responsible for a considerable proportion 
of variation and must be accounted for to achieve more accurate predictions. For example, the 
experiment might have involved repeated measurements of participating individuals, partitioning of the 
experimental subjects between several blocks (plots, tanks) for technical reasons, or measurements of all 
the effects of interest on different genotypes. The latter is the case in our coral example, where we used 
8 coral colonies (“individuals”) each split into four clonal fragments that were exposed to our 
experimental treatments. The grouping factors can be specified in the model as additional random 
factors; however, in contrast to the sample factor, these would be gene-specific since different genes 
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might be affected by the grouping factors differently. In our case, we want to account for possible 
differences in baseline level of expression of each of our genes between 8 colonies, and we augment our 
model as follows: 

ln(rate) ~ gene + gene:Condition + gene:Timepoint + gene:Timepoint:Condition + sample + 
                      + gene:individual .          

  

Once again, the model is flexible in the number of grouping factors that could be included.  

The two remaining terms that we still need to add are both error terms, accounting for the residual 
variation that remained unexplained. The first one is specified as a random factor and reflects the 
unexplained differences between biological replicates (samples). It makes sense to assume that this 
factor would be gene-specific, i.e., some genes will vary more than others among samples: 

ln(rate) ~ gene + gene:Condition + gene:Timepoint + gene:Timepoint:Condition + sample + 
  + gene:individual + gene:sample .                              

Finally, the remaining unexplained variation would be due to the differences between technical 
replicates, reflecting the precision of the qPCR instrument used. We follow Steibel et al (2009) who 
found that the model fit is typically improved when specifying this term as gene-specific: 

ln(rate) ~ gene + gene:Condition + gene:Timepoint + gene:Timepoint:Condition + sample + 
                      + gene:individual + gene:sample + gene:residual .     (2) 

It is important to note that separating variances due to gene:sample from gene:residual is only possible 
when the dataset contains technical replicates (which, ideally, it should); otherwise the variances 
collapse into a single term gene:residual.  

There is one last, but by no means the least, piece to the model formulation. We will assume additional 
variability due to Poisson process on top of all these sources of variation: the observed count is assumed 
to be a sample drawn from the Poisson distribution with the mean equal to the predicted count. This 
accounts for the increase in variance due to “shot noise” that might accompany down-regulations of low- 
and medium-abundant genes and allows for zero counts in the data. Note that the model does not assume 
that Poisson variation is the only source of residual variation: error terms terms within the model (2) 
capture any additional variation, and therefore account for the over-dispersion of the data.  

Fitting the model: function mcmc.qpcr()  

The model (2) may look quite complicated, but since many of its terms are universal to any qRT-PCR 
analysis, the syntax for the actual function call can be substantially simplified. To specify the model, 
construct appropriate priors, and fit it to the data without (at the moment) specifying any control genes, 
the function mcmc.qpcr() only requires the following: 
 

mm=mcmc.qpcr( 
      fixed="condition+timepoint+condition:timepoint", 
      random="individual", 
      data=dd 
      ) 
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As the function starts to run, it prints out constructed priors and MCMCglmm-aimed formulas for fixed 
and random effects (as a basic “sanity check”), and then proceeds to the MCMC chain reporting the 
number of iterations done and one useful value called “Acceptance ratio for latent scores”. This value 
tells us whether the MCMC chain is still searching for a best-fit patch of parameters (smaller values at 
the beginning of the chain) or has reached it and is now sampling all the compatible parameter 
combinations (the values become more or less stable). By default, the chain does 12000 iterations 
(‘nitt=12000’) and discards the first 2000 of them (‘burnin=2000’) .  If the plateau of the acceptance 
ratios is reached later than iteration 2000, we will need to adjust these parameters a bit. If, for example, 
the plateau is reached at iteration 4000, we will need to specify ‘burnin=4000’ and also increase the total 
number of iterations proportionally (by 4000-2000 in our case) to obtain the same number of parameter 
samples, which comes to ‘nitt=14000’.  

The object returned by the function (‘mm’) is of the MCMCglmm class, containing all the parameter 
values and deviances sampled during the progress of the MCMC chain. To appreciate the complexity of 
the actually fitted model, let’s summarize it and see how many terms and interactions were involved. 
Below is the truncated result (omitting 11 genes out of 15), with annotations explaining the entries: 
summary(mm) 
Iterations = 3001:12991 
Thinning interval  = 10 
Sample size  = 1000   # 1000 samples of parameter sets and deviances were stored 
 
DIC: 6479.916   # Deviance Information Criterion 
 
G-structure:  ~sample       # variance due to unequal template loading between samples 
 
       post.mean l-95% CI u-95% CI eff.samp 
sample     1.493   0.7976    2.442     1000 
 
               ~idh(gene):individual  # gene-specific variance between individual corals 
 
                 post.mean l-95% CI u-95% CI eff.samp 
actin.individual 0.0041456 8.862e-17 2.185e-02   103.85 
adk.individual   0.0006856 3.992e-17 3.379e-05   301.57 
... # omitting entries for 11 genes 
spon2.individual 6.3975206 1.183e+00 1.521e+01  1000.00 
ubl3.individual  0.0571330 5.994e-17 2.996e-01    41.49 
 
               ~idh(gene):sample  # gene-specific variance between samples 
 
             post.mean l-95% CI u-95% CI eff.samp 
actin.sample 0.2156528 9.914e-02  0.374336   512.84 
adk.sample   0.5445622 1.785e-01  0.961275   282.26 
...   
spon2.sample 0.7653844 2.902e-01  1.421424   222.94 
ubl3.sample  0.2851004 6.560e-02  0.547365   113.78 
 
 R-structure:  ~idh(gene):units   # gene-specific variance in measurement precision  
 
            post.mean l-95% CI u-95% CI eff.samp 
actin.units 0.0650145 3.483e-02 0.098712  1000.00 
adk.units   0.0710713 1.693e-02 0.145826   386.69 
...   
spon2.units 0.0292340 6.446e-03 0.061818   311.44 
ubl3.units  0.0303894 6.487e-04 0.083863    79.43 
Location effects: count ~ 0 + gene + gene:condition + gene:timepoint + gene:condition:timepoint  
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                                     post.mean l-95% CI u-95% CI eff.samp  pMCMC     
# First, gene-specific intercepts, reflecting how abundant each gene is on average. 
# These are of no interest to us. 
geneactin                              9.35429  8.37311 10.16611  1134.68 <0.001 *** 
geneadk                                2.33339  1.21747  3.28453  1100.97 <0.001 *** 
...   
genespon2                              3.40589  1.30645  5.43524  1000.00  0.002 **  
geneubl3                               2.67307  1.72603  3.63866  1000.00 <0.001 *** 
 # expression changes due to exposure to heat stress:  
geneactin:conditionheat               -1.29628 -2.49431 -0.01555  1000.00  0.046 *   
geneadk:conditionheat                  0.37930 -1.02631  1.83121  1000.00  0.574     
...   
genespon2:conditionheat                1.11408 -0.21414  2.69422  1000.00  0.124     
geneubl3:conditionheat                 0.51200 -0.70768  1.99122  1000.00  0.434     
 # expression changes between two timepoints:  
geneactin:timepointtwo                -0.96082 -2.15698  0.49938  1000.00  0.148     
geneadk:timepointtwo                  -1.29126 -2.75501  0.17560   549.28  0.094 .   
...  
genespon2:timepointtwo                -1.57614 -2.98161  0.04681   669.22  0.044 *   
geneubl3:timepointtwo                 -1.94519 -3.27265 -0.62660   749.12  0.008 **  
 # additional expression changes between two timepoints if a coral was heat-stressed at first:  
geneactin:conditionheat:timepointtwo   1.85779 -0.08222  3.62050  1000.00  0.050 .   
geneadk:conditionheat:timepointtwo     1.08814 -1.01211  2.94039  1000.00  0.302     
... 
genespon2:conditionheat:timepointtwo   0.29039 -2.00639  2.15243   775.15  0.780     
geneubl3:conditionheat:timepointtwo    0.54378 -1.33804  2.31208   876.90  0.562     
 --- 

The results may be ever so slightly different in each case of model fitting, because of the randomness in 
MCMC process. Note that the summary lists 95% credible intervals and MCMC-based p-values for each 
of the estimated parameters. A credible interval is a Bayesian analog of a confidence interval in 
frequentist statistics. Although a confidence interval may sound more familiar, the credible interval has a 
more intuitive interpretation, being the interval containing the true value of the parameter with a set 
probability (for example 0.95) given the data and the priors, whereas the confidence interval would be 
the range that includes the true parameter value in 95% of the independent re-runs of the experiment. 
The “location effects” (= fixed effects) will be of our primary interest. They are expressed as natural 
logarithms of fold-changes. qPCR practitioners might be more comfortable with the fold-changes on 
log2 scale (divide the listed values by ln(2) ), since it would be just like the difference in number of 
qPCR cycles. We will later see how these values can be combined to calculate the difference between 
conditions of interest.  

Also note that the summary for random effects does not show point-estimates (for example, for 
~idh(gene):individual, there is no value giving the expression of actin in the individual s1), only the 
variances attributable to each gene. Although it is possible to make the function save these estimates, 
they are of little practical value. 

Diagnostic plots 

There are three main criteria that can tell us whether our linear modeling approach is valid in application 
to the dataset at hand. First, the residuals of the model should not show a trend depending on the 
predicted value; if this is violated, then the data are not actually linear. Second, the size of the residuals 
should not change depending on the predicted value. This is the test for equal variances across the 
modeled range (homoscedastisity). Third, the residuals should be approximately normally distributed. 
For intricate statistical procedures such as linear mixed modeling, these assumptions are best tested 
graphically using three diagnostic plots: residuals plotted against predicted value to verify linearity, 
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“scale-location” plot of the square root of absolute value of the residuals (i.e., the size of residuals) to 
test for homoscedasticity, and quantile-quantile plot of residuals against normal distribution to test for 
normality. The latter is simply a plot of ranked standardized (divided by their standard deviation) 
residuals against ranked normally-distributed variable, which is simulated. In our case, the criteria 
should apply to the lognormal residuals egijk from formula [2] (remember that we also have Poisson 
residuals on top of these). The MCMC.qpcr package includes a function diagnostic.mcmc that produces 
these plots; however, we first need to run the model with two additional options (pr=T,pl=T) to be able to 
extract the residuals:  
mmd=mcmc.qpcr( 
      fixed="condition+timepoint+condition:timepoint", 
      random="individual", 
      data=dd, 
 pr=T, 
 pl=T 
      ) 

Then we can see whether our data fit the linear model assumptions reasonably well (Fig.2): 

diagnostic.mcmc( 
      model=mmd, 
      col="grey50", 
      cex=0.8 
      ) 

(the arguments and ’col’ and ’cex’ here are not essential, they adjust the color and the size of the 
points on the plots) 

 

Figure 2. Diagnostic plots produced by the function diagnostic.mcmc(). 

Extracting and visualizing results 

NOTE: This section has been written prior to version 1.0.3. It is all still valid; however, 
if your experimental design involves a single multilevel factor or two fully crossed 
multilevel factors, your best bet in extracting and plotting the results is functions 
HPDsummary() and summaryPlot(), described in the Very Short tutorial above.  

One great advantage of the MCMC-based model fitting is that the estimates as well as credible intervals 
for any modeled effects (or their combinations) can be computed directly from the results of MCMC 
sampling.  
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Determining exactly which combination of factors corresponds to the contrasts of interest can be 
confusing for someone who is new to linear modeling, so I will briefly walk through the logic using our 
coral example. We want to know how coral genes are regulated in response to heat stress, and how they 
are then regulated after the coral is allowed to recover.  So we want to find the combinations of fixed 
effects which would describe (i) the difference between stressed and unstressed coral on the first day, 
and (ii) the difference between recovering coral and its earlier stressed condition. Let’s call the fist 
contrast “stress”, and the second one “recovery”. To see which combinations of effects describe these 
contrasts, it is also important to remember that all the effects listed in our model’s summary are 
differences with respect to one particular combination of factor levels. Which one? The one that does not 
appear in the list of fixed effects in the summary. Conveniently, it seems to be the control condition at 
timepoint one; R chose it simply because ‘control’ and ‘one’ come alphabetically before ‘heat’ and ‘two’ 
(generally, any combination of factor levels can be specified as a reference using the generic relevel() 
function). Therefore, the “stress” contrast directly corresponds to ‘conditionheat’ effect. The mean 
expression change for any particular gene, for example, actin, due to “stress” is thus given by the mean 
of the MCMC sample of the geneactin:conditionheat parameter, while its 95% credible interval is the 
range excluding top and bottom 2.5% of all sampled values. The means and credible intervals for such 
directly reportable effects are given in the model’s summary: 
… 

                            post.mean l-95% CI u-95% CI eff.samp  pMCMC     
geneactin:conditionheat     -1.29628 -2.49431 -0.01555  1000.00  0.046 *   

 ‘pMCMC’ here is a two-tailed p-value, which is twice the fraction of all sampled values (out of 
‘eff.samp’, 1000) that cross zero with respect to the mean. Note that, under this model, the actin down-
regulation due to stress is significant at the 0.05 level. 

 “Recovery” is a trickier contrast: it is a compound effect, involving a combination of several directly 
reported effects. To compute it, remember that the expression of a gene in a stressed coral on the day of 
stress is, as we just discussed, 

ES= [reference condition] + conditionheat , 

while expression of a gene in a previously stressed coral on the day of recovery (timepoint ‘two’) is  

ER = [reference condition] + conditionheat + timepointtwo + conditionheat:timepointtwo . 

Therefore, the difference in expression between these two conditions, representing gene regulation due 
to recovery from stress, is  

ER – ES = timepointtwo + conditionheat:timepointtwo . 

So, to compute the “recovery” effect for a gene, we have to sum up its ‘timepointtwo‘ and 
‘conditionheat:timepointtwo’ effects within each sampled iteration. These sums will then constitute a 
new MCMC sample for which the mean and credible interval can be computed in the same manner as 
for the directly reported effects.  

Manually extracting and manipulating gene-specific effects from MCMC results can be tedious, to say 
the least. Function HPDplot() has been developed to streamline this processes and plot the results. It also 
converts the estimates from natural logarithm to log2. 

The following will generate two separate point-and-whiskers plots for the “stress” and “recovery” 
effects across all genes (Fig. 3):   
HPDplot( 



 17 

      model=mm, 
      factors="conditionheat", 
      main="stress" 
      ) 
HPDplot( 
      model=mm, 
      factors=c( 
       "timepointtwo", 
       "conditionheat:timepointtwo" 
       ), 
      main="recovery" 
) 
 

 The argument ‘factors’ here specifies the factors which need to be plotted. If more than one factor is 
listed, such as c("timepointtwo","conditionheat:timepointtwo"), these factors will be summed up – this 
is how compound effects, such as our “recovery”, can be calculated. The argument “main” simply gives a 
title to the plot. 

The fixed effects math goes just one step further. In models with fixed factors with more than two levels, 
to perform Tukey-style pairwise comparisons we might wish to subtract one type of effect from another, 
or, in a more general case, subtract one sum of effects from another sum of effects. To do this, the 
function HPDplot() can be provided with an additional argument, ‘factors2’, which will specify the sum 
of effects to be subtracted from the one specified by ‘factors’.  

Visually, it would be easier to compare the “stress” changes to “recovery changes if they were plotted on 
the same plot. This can be done with just a couple extra arguments (Fig. 4): 
HPDplot( 
      model=mm, 
      factors="conditionheat", 
      main="stress / recovery", 
      jitter=-0.15, 
      ylim=c(-10,12) 
      ) 
HPDpoints( 
      model=mm, 
      factors=c( 

 
Figure 3. Fixed effects of stress and recovery according to the naïve model (no control genes 
specified). The points are posterior means, the whiskers denote 95% credible intervals. The figure is 
plotted with HPDplot(). 
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       "timepointtwo", 
       "conditionheat:timepointtwo" 
       ), 
      jitter=0.15, 
      col="orange2", 
 pch=17 
      ) 

Note that the second function call is now to ‘HPDpoints’, which adds to an existing plot rather than 
creates a new one. The parameter ‘jitter’ shifts the dot-whiskers to the left if negative and to the right if 
positive, so the combined graphs would not overlap. ‘ylim’ in the call to ‘HPDplot’ sets the y-axis range, 
to make sure both graphs will fit. Finally,  ‘pch’  in the second call changes the type of symbol (see 
http://www.endmemo.com/program/R/pchsymbols.php for the chart of what’s available) and ‘col’ 
changes the color of the added graph (R colors: http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf ).  

A finishing touch is to add legend to the plot:  
legend(11,12,"stress",lty=1,pch=1,bty="n") 
legend(11,10,"recovery",lty=1,pch=17,col="orange2",bty="n") 

Try ?legend to see details about this basic R function. Briefly, it needs to be told the coordinates on the 
plot where to put the label (the first two numbers are x,y), type of line (if any), type of symbol (if any), 
color (black by default), and whether it should be in the box. 

An alternative representation of the results is to plot them gene by gene for all conditions of interest. The 
function HPDplotBygene() does that, but first we need to create a ‘list’ object describing what are the 
conditions we are looking to plot and which factor combinations they correspond to. Similarly to 
HPDplot() function, each condition can be described by two groups of fixed effects, ‘factors’ and 
‘factors2’. The effects within each group will be summed up, and then the sum for  ‘factors2’ will be 
subtracted from the sum for ‘factors’. In the vast majority of cases, a single group of effects (‘factors’) 
would be sufficient to describe conditions of interest. The groups may include the gene-specific intercept 
(which should be denoted by ‘0’ among ‘factors’), corresponding to the gene expression level under 
‘reference’ condition (see page 10). 

 
Figure 4. Fixed effects of stress and recovery according to naïve model (no control genes specified). The 
points are posterior means, the whiskers (left) or dashed lines  (right) denote 95% credible intervals. The 
figure is plotted with HPDplot(), HPDpoints(), and legend(). 
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First, we create the condition-defining list (review page 10 if you are still unsure how different 
conditions are described by sums of fixed effects): 
 
cds=list( 
   control=list(factors=0), # this is the gene-specific intercept, i.e., our reference condition 
   stress=list(factors=c(0,"conditionheat")), 
   recovery=list(factors=c(0,"conditionheat","timepointtwo","conditionheat:timepointtwo")) 
   ) 

Now we can plot abundances of any gene under these conditions. Let’s plot three most responsive genes, 
actin, hps60 and hsp16. We will do it gene by gene, creating a plot panel with y-limits when plotting the 
first gene and then adding more graphs to the same plot, jittering them a little so they don’t overlap:  
HPDplotBygene( 
 model=mm, 
 gene="actin", 
 conditions=cds, 
 col="cyan3", 
 jitter=-0.15, 
 ylim=c(-3.5,15), 
 pval="z" 
 ) 
HPDplotBygene( 
 model=mm, 
 gene="hsp60", 
 conditions=cds, 
 newplot=FALSE, 
 col="grey50", 
 pval="z" 
 ) 
HPDplotBygene( 
 model=mm, 
 gene="hsp16", 
 conditions=cds, 
 newplot=FALSE, 
 col="coral", 
 jitter=0.15, 
 pval="z" 
 ) 

Note that in addition to the plot (Fig. 5), the function HPDplotBygene  outputs the matrix of mean pairwise 
differences (log2-transformed fold changes, think of them as the difference in number of PCR cycles) 
and the matrix of pairwise p-values, like shown here for the last call to HPDplotBygene (for hsp16): 
 

$mean.pairwise.differences 
         control   stress  recovery 
control        0 6.678398  2.089490 
stress         0 0.000000 -4.588908 
recovery       0 0.000000  0.000000 
 
$pvalues 
         control stress     recovery 
control        0      0 9.056390e-03 
stress         0      0 3.904765e-11 
recovery       0      0 0.000000e+00 

Only the top triangles of the matrices are meaningful.  

 
Figure 5. Abundances of actin (blue), hps60 (grey) and hsp16 (red) 
across experimental conditions, plotted using HPDplotBygene(). The 
whiskers denote 95% credible intervals. 
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The p-values listed in this case are based on Bayesian z-score by specifying pval="z" among arguments, 
to approximate very small p-values from the limited MCMC sample size. See  “Estimating statistical 
significance” section below for details on that. 

If the experiment contains more than one grouping factor, function HPDplotBygeneBygroup() can plot up 
to three different groups on the same plot. For example, in another coral-related experiment that we 
recently performed, we heat-stressed corals from two different populations, ‘offshore’ and ‘inshore’. Fig. 
6 shows the plot produced by HPDplotBygeneBygroup() for one of the genes that we assayed (coll, 
collagen), split by the population of origin, across three coral conditions: normal, pale and bleached. The 
function takes two or three lists of conditions that define the groups to be plotted (note: the following 
commands will not work with the demo dataset): 

inshore=list( 
normal=list(factors=0), 
pale=list(factors=c(0,"statuspale")),  
bleached=list(factors=c(0,"statusbleach")) 

  ) 
offshore=list( 

normal=list(factors=c(0,"originoffshore")), 
pale=list(factors=c(0,"statuspale","originoffshore","originoffshore:statuspale")), 

 bleached=list(factors=c(0,"statusbleach","originoffshore","originoffshore:statusbleach")
) 

) 
 
HPDplotBygeneBygroup( 

model=mm, 
gene="coll", 
group1=inshore, 
group2=offshore 
) 

 
Incorporating information about control genes 

Now it is time to remember that all the results we have seen 
thus far were obtained without telling the model which genes 
are expected to be stable. This is actually not required for the 
model to work correctly, even when there are only a few genes 
with very unbalanced pattern of changes (Matz, Wright, and 
Scott, 2013). This highlights the advantage of linear mixed 
model analysis, which makes the model “self-normalizing” by 
correctly inferring the variation due to unequal template 
loading, at least as long as the number of biological samples in 
the experiment is relatively large. Still, incorporating control 
genes into the analysis is a venerable tradition in qRT-PCR, and 
indeed this information helps to increase the power (i.e., narrow 
down credible intervals) and might adjust the point estimates slightly, as we will see. More importantly, 
stable genes can be used to make sure that the model behaves reasonably: they should appear more or 
less unchanged even if the model is fitted without using them as priors, as we have done before in this 
tutorial. 

The three control genes that were used in the published analysis of the coral.stress dataset (Kenkel et 
al. 2011) were rpl11, nd5, and eif3h. Looking at the plots of fixed effects from the ‘naïve’ model (Fig. 
4), we can see that nd5 and rpl11 indeed appear more or less stable, while eif3h tends to come up under 

 
Figure 6. Relative abundances of coll 
across conditions in inshore (red 
circles) and offshore (blue triangles) 
corals. The whiskers denote 95% 
credible intervals. Plotted using  
HPDplotBygeneBygroup().  
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stress and down during recovery. We therefore choose to use only rpl11 and nd5 as control genes. 
Generally, the naïve model is a good way to identify potential control genes in the first place. 

It must be emphasized, however, that inferring control genes from an experimental dataset and then 
using them to analyze the same dataset may lead to erroneous inference due to circularity. Ideally, 
control genes should be selected based on an independent experiment or other supporting data. If there is 
no such prior information, at the very least an alternative method of control gene selection should be 
used, such as non-parametric geNorm (Vandesompele et al, 2002). The MCMC.qpcr package includes a 
function cq2genorm, which reformates the data into log-transformed relative expression values and 
outputs the data in the form that may be directly fed into selectHKgenes function of SLqPCR package, 
which is the R implementation of geNorm algorithm. Try ?cq2genorm for more details.  

To fit the ‘informed’ model using these two control genes, we must tell the model not only what are our 
controls, but also how stable we expect them to be. We actually don’t have to assume that the specified 
controls are fully stable, which is a particularly nice touch in Bayesian analysis. In the syntax of 
mcmc.qpcr() function, the control genes’ stability is specified using m.fix and v.fix parameters, which 
correspond to the average allowed fold change in response to fixed and random factors, respectively. 
The default values of m.fix is 1.2 (and of v.fix is NULL, no fixation) but it can be increased to reflect 
greater uncertainty about the stability of control genes, or lowered all the way down to 1, which would 
mean that the control genes are required to be perfectly stable (hardly ever a realistic assumption, 
Thellin et al. 1999). The parameter that has the most effect on the estimates is m.fix, we are only 
keeping v.fix because it seems reasonable and does not hurt. 

Let’s fit the ‘informed’ model with rpl11 and nd5 as control genes and m.fix=1.2 to the dd data and 
compare the results to the ‘naïve’ model. But first, we will re-fit the naïve model with the arguments that 
tell the model what the control genes are but do not let the model use them ( ‘include=0’). The estimates 
will not change, but the order of the genes in the output will be the same as in the informed model, so 
their results can be compared on the same plot. 
naive=mcmc.qpcr( 
      fixed="condition+timepoint+condition:timepoint", 
      random="individual", 
      data=dd, 
      controls=c("rpl11","nd5"), 
      include=0 
      ) 
informed=mcmc.qpcr( 
      fixed="condition+timepoint+condition:timepoint", 
      random="individual", 
      data=dd, 
      controls=c("rpl11","nd5"), 
 m.fix=1.2 
      ) 

Plotting “stress” effects (Fig. 7, left panel): 
HPDplot( 
      model=naive, 
      factors="conditionheat", 
      main="stress", 
      hpdtype="l" 
      ) 
HPDpoints( 
      model=informed, 
      factors="conditionheat", 
      hpdtype="l", 
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      col="coral" 
      ) 

Plotting “recovery” effects (Fig. 7, right panel): 
HPDplot( 
      model=naive, 
      factors=c("timepointtwo","conditionheat:timepointtwo"), 
      main="recovery", 
      hpdtype="l" 
      ) 
HPDpoints( 
      model=informed, 
      factors=c("timepointtwo","conditionheat:timepointtwo"), 
      hpdtype="l", 
      col="coral" 
      ) 

 
 
This time, to better evaluate the changes in the width of credible intervals, we used the option 
‘hpdtype=”l”’ for HPDplot() and HPDpoints(). It makes the functions draw dashed lines across upper and 
lower 95% credible interval limits of all genes. 

We can see (Fig. 7) that informing the model about control genes and allowing them to be regulated 1.2 
fold on average has virtually no effect on the point estimates, but noticeably narrows the credible 
intervals, so the informed model is more powerful. In fact, almost the same increase in power is already 
provided by including a single control gene. 

Estimating statistical significance 

Significant (at the alpha = 0.05) fixed effects are the ones in which the 95% credible interval does not 
include zero, such as, for example, hsp16, hsp70, or hsp90 on Fig. 4. However, we are typically 
performing multiple comparisons of this kind within a qRT-PCR experiment, and so the resulting 
significances must be corrected accordingly. The solution provided within the MCMC.qpcr package is to 
calculate p-values for all the effects of potential interest (i.e., all of those which were given a chance to 

Figure 7. Comparison of the informed (orange) and naïve (black) models. The informed model used two 
control genes, rpl11 and nd5, with m.fix (average allowed fold-change) =1.2; the naïve model did not use 
any control gene information. The points are posterior means, the dashed lines denote 95% credible 
intervals. The figure is plotted with HPDplot() and HPDpoints() with the option ‘hpdtype=”l”’. 
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become significant) and correct them for multiple testing using one of the established methods. The p-
values can be obtained in two ways. For large MCMC samples it is practical to use a Bayesian two-sided 
p-value, which is twice the fraction of all sampled values that crosses zero with respect to the mean. The 
lowest p-value that can be thus obtained is 2 divided by the size of MCMC sample; so for the default set 
of MCMC chain parameters that results in 1,000 samples it cannot be lower than 0.002. To approximate 
lower p-values based on a limited MCMC sample size, we assume that the posterior distributions of a 
parameter can be represented by a normal distribution, calculate a Bayesian z-score (the mean of the 
posterior divided by its standard deviation) and perform a standard z-test to derive a two-tailed p-value. 
The z-score based p-values agree with MCMC-based ones very well and are distributed uniformly under 
the null hypothesis (Matz, Wright, and Scott, 2013).  

To obtain point-estimates of posterior modes, means, 95% credible intervals, and uncorrected p-values 
for fixed effects from our informed model, we will run the function HPDplot() with a flag ‘plot=FALSE’: 
stress=HPDplot( 
      model=informed, 
      factors="conditionheat", 
      plot=FALSE 
      ) 
stress 
                              mode        mean       lower      upper       pval.z pval.mcmc 
geneactin:conditionheat -1.5269197 -1.63992250 -2.89236066 -0.5189583 6.801355e-03     0.006 
geneadk:conditionheat    0.8814979  0.81502759 -0.72771887  2.3017463 2.906479e-01     0.270 
... 
genehsp60:conditionheat  2.7582144  2.54611536  1.40805668  3.5734072 3.178015e-06     0.002 
genehsp90:conditionheat  2.6241394  2.75244674  1.37413737  4.0876553 5.664635e-05     0.002 
... 
genend5:conditionheat    0.1592772  0.12640394 -0.87753846  1.1750965 8.113947e-01     0.814 
generpl11:conditionheat  0.3852459  0.36824375 -0.68370549  1.2741158 4.703683e-01     0.494 
 

This was for the effects of “stress”, let’s obtain the “recovery” estimates, too: 
recovery=HPDplot( 
      model=informed, 
      factors=c("timepointtwo","conditionheat:timepointtwo"), 
      plot=FALSE 
      ) 
recovery 

                        mode       mean      lower       upper       pval.z pval.mcmc 
geneactin ...     1.52610996  1.4851758  0.1752831  2.83182731 3.190544e-02     0.024 
geneadk ...       0.06651484 -0.1314239 -1.7749815  1.50854783 8.766451e-01     0.898 
... 
genehsp60 ...    -2.35357919 -2.5368612 -3.7839781 -1.25969779 8.798320e-05     0.002 
genehsp90 ...    -2.36500390 -2.5724855 -4.1916809 -1.17988543 8.776660e-04     0.002 
... 
genend5 ...      -0.79335215 -0.8088653 -1.9794449  0.55651985 2.186604e-01     0.208 
generpl11 ...    -0.35166553 -0.3625902 -1.5735637  0.75848378 5.511591e-01     0.550 

(The names of the effects in this case have been truncated to fit the table into page.) 

Note that the control genes ("rpl11","nd5") are still there, appearing in the end of each list.  

Now, we will concatenate these results into a single table all.effects and correct the p-values for 
multiple testing using Benjamini-Hochberg method (Benjamini, Hochberg 1995), while disregarding the 
entries corresponding to the control genes since these are not among our effects of interest: 
all.effects=rbind(stress,recovery) 
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padj.qpcr(all.effects, controls=c("rpl11","nd5")) 
                      pval.z pval.mcmc       padj.z  padj.mcmc 
 # stress: 
geneactin ...   6.801355e-03     0.006 1.607593e-02 0.014181818 
geneadk ...     2.906479e-01     0.270 3.434930e-01 0.319090909 
... 
genehsp60 ...   3.178015e-06     0.002 2.065710e-05 0.005777778 
genehsp90 ...   5.664635e-05     0.002 2.945610e-04 0.005777778 
... 
genend5 ...               NA        NA           NA         NA 
generpl11 ...             NA        NA           NA         NA 
 
 # recovery: 
geneactin ...   3.190544e-02     0.024 5.925296e-02 0.044571429 
geneadk ...     8.766451e-01     0.898 9.117109e-01 0.933920000 
... 
genend5 ...               NA        NA           NA         NA 
generpl11 ...             NA        NA           NA         NA 

The output of padj.qpcr() actually has full names of effects and contains all the original columns 
(including mean, mode, and credible interval).  Now the p-values for the control genes are dropped from 
consideration. 

Lognormal model for higher-abundance data 

In datasets where all the targets always remain relatively abundant, there will be little or no Poisson-
induced variation. In such cases, it is possible to perform the Bayesian analysis described here based on 
the lognormal model without the Poisson component, thus sidestepping the need to make assumptions 
concerning Cq1. MCMC.qpcr package implements this model as function mcmc.qpcr.lognormal. The data 
for this function must be prepared using the function cq2log, which is analogous to cq2counts but 
converts the Cq values into natural logarithms of relative abundances (Ra) while correcting for the 
efficiency of amplification using the following formula (Steibel et al, 2009; Kenkel et al, 2011): 

Ra = - Cq  · ln ( E )  .      (4) 

These values are processed using the same model but lacking the Poisson component, with the same 
possibilities for specifying control genes as priors as well as for downstream statistical analysis and 
visualization. The model is expected to generate the same or very similar results as the Poisson-
lognormal model for datasets that do not have Cq values exceeding 32. It is important to remember that, 
since the lognormal model cannot adequately deal with the instances of no amplification, such 
datapoints must be excluded from the analysis or replaced by some arbitrarily high Cq value (for 
example, 38), which may bias the inference if such instances are frequent – so use the Poisson-
lognormal model for such cases. 

For high-abundance data, the results of lognormal model will be identical to the basic mcmc.qpcr model 
irrespective of the choice of Cq1, so there is really no particular reason to use it. 

“Soft normalization” 

One of the key assumptions of the MCMC.qpcr model is that the template loadings, which reflect the 
amount and quality of RNA across samples, are drawn from the same gaussian distribution irrespective 
of the condition. In other words, even though RNA quantity and quality is allowed to vary between 
samples, it is assumed to vary in the same way under all conditions.  If under some condition the RNA 
samples are consistently of lower concentration and/or poorer quality, the model will infer down-
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regulation of all genes under this condition – in other words, this condition will appear to have a global 
effect affecting all genes in the same way. Note that the presence of such a global effect does not 
necessarily mean it is not really there: all genes can indeed be co-regulated together. If there is a good 
reason to suspect that global effect is an artifact - for example, when RNA concentration or integrity was 
correlated with condition, and/or several highly respectable control genes change their expression 
together with everybody else -  there is a way to account for such a bias, which would unavoidably 
require falling back to reliance on control genes for normalization. The option normalize=TRUE in 
combination with specifying control genes (ideally, 3 or more) in a call to mcmc.qpcr() will result in 
“soft normalization” without losing the GLM advantages (i.e., low-abundant targets affected by Poisson 
noise and occasional lack of amplification will still be properly modeled). Under soft normalization, a 
fake control gene is created representing geometric average of the specified control genes and is used as 
a tracker of global effects, which will be subtracted by functions HPDsummary() and HPDplot().   

In our coral stress dataset, we seem to have a global effect problem at time point two, where all genes 
appear to be slightly down-regulated (Fig. 8): 
data(coral.stress) 
data(amp.eff) 
dd=cq2counts(coral.stress,genecols=c(5:19),condcols=c(1:4),effic=amp.eff) 

naive=mcmc.qpcr( 
      fixed="condition+timepoint+condition:timepoint", 
      random="individual", 
      data=dd 
) 
smm.naive=HPDsummary(naive,dd,relative=T) 

 

Figure 8. HPDsummary of the full two-factorial naïve model for the coral.stress dataset. 

Let’s see if we can fix this with soft normalization using nd5 and rpl11 as controls (Fig. 9): 
norms=mcmc.qpcr( 
      fixed="condition+timepoint+condition:timepoint", 
      random="individual", 
      data=dd, 
 controls=c("nd5","rpl11"), 
 normalize=TRUE 
) 
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smm.norms=HPDsummary(norms,dd,relative=T) 

 

Figure 9. HPDsummary of the “soft-normalized” model (with nd5 and rpl11 as control genes) for the 
coral.stress dataset. The genes at timepoint two are now well-behaved (compare to Fig. 8). 

The “classic” model 

For the old times sake and for the cases when targets remain relatively abundant not to worry about 
Poisson noise (the majority of the Cq values are below 30 and none of them are higher than 32), the 
package implements the “classic” approach that starts with the log-transformed relative abundances (Ra, 
formula 4) produced by the cq2log() function, performs multigene normalization (Vandesompele et al, 
2002), and then analyzes all the genes jointly within a single linear mixed model fitted by MCMC. We 
call this model “classic” since it is mostly based on earlier developments and lacks the main 
advancements implemented within the MCMC.qpcr package, such as the use of generalized linear 
modeling to account for higher variance of low-abundant targets and the possibility to analyze the data 
without using control genes. The one innovation the “classic” model offers, however, is a single-model 
rather than gene-by-gene analysis, which boosts the power considerably since the model draws evidence 
from all genes simultaneously. The “classic” model uses the same formula (2), only omitting the sample-
specific variance and Poisson components. The function mcmc.qpcr.classic(), implementing this model, 
uses default uninformative priors of the MCMCglmm function, which results in estimates corresponding to 
maximum likelihood analysis. 

To analyze the coral stress data using the “classic” model, we first must create a log-transformed dataset 
(this command uses very similar syntax as cq2counts, see page 10): 

dl=cq2log( 
      data=coral.stress, 
      genecols=c(5:19),  # where the Cq data are in the data table 
      condcols=c(1:4),   # which columns contain factors   
      effic=amp.eff, 
 noamp=38 
      ) 
 

There were 11 warnings (use warnings() to see them) 
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The warnings are produced because the instances on no-amplification, coded as -1, were encountered in 
the data. They were replaced by the value specified as ‘noamp’ argument: 38 (the default) is an arbitrarily 
low, but not too low, value corresponding slightly less than one molecule per amplification trial. Use 
‘noamp=NA’ to disregard such instances completely. Technically, such low-abundance datasets should be 
analyzed using Poisson-lognormal model. 

Let’s fit the “classic” model with pl=T,pr=T options for us to be able to plot the diagnostic plots using 
diagnostic.mcmc(): 
classic=mcmc.qpcr.classic( 
      fixed="condition+timepoint+condition:timepoint", 
      random="individual", 
      data=dl, 
 controls=c(“nd5”,”rpl11”), 
 pr=T, 
 pl=T 
      ) 
diagnostic.mcmc( 
      model=classic, 
      col="grey50", 
      cex=0.8 
      ) 

The arguments and ’col’ and ’cex’ here are not essential, they adjust the color and the size of the 
points on the plots. 

The plots (Fig. 10) show that the “classic” model satisfies the linearity (“residuals vs predicted” plot) 
and homoscedasticity (“Scale-Location” plot) criteria reasonably well, although its residuals do not fully 
conform to the normal distribution (“normal Q-Q plot”). This is most likely the result of Poisson 
variation existing in the data as well as no-amplification instances, since the residuals of the Poisson-
lognormal model were much closer to normal (see Fig. 2).  

Let’s compare the inference of the “classic” model to our full-Bayesian informed model (Fig. 11): 

HPDplot( 
      model=informed, 
      factors="conditionheat", 
      pch=19,  
      col="cyan3", 
      jitter=-0.15, 
      main="stress" 

 
Figure 10. Diagnostic plots for the “classic” (normalizing) model (compare to Fig. 2) 
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      ) 
HPDpoints( 
      model=classic, 
      factors="conditionheat", 
      pch=19, 
      col="coral", 
      jitter=0.15, 
      ) 
legend(11,10.5,"informed",bty="n",pch=19,col="cyan3") 
legend(11,9,"\"classic\"",bty="n",pch=19,col="coral") 
 

See page 18 for explanations of the ‘beautifying’ tricks used here, such as options pch, col, and 
jitter, and the legend() function. 

We can see that the “classic” model infers virtually the same fold-changes as the full-Bayesian informed 
model, but does it with higher confidence since the credible intervals are typically narrower. The 
“classic” model therefore represents a powerful alternative to the GLM-based analysis when the 
expression levels remain relatively high and control genes can be trusted.  

 
  

 
Figure 11. Comparison of the predictions of the informed model with two control genes and 
“classic” (normalizing) model. Credible intervals of the “classic” model are typically narrower, so 
the model is more powerful as long as the average stability of the control genes can be fully 
trusted.  
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Detecting outlier samples  

As an optional step during the preliminary data analysis we might wish to detect and exclude samples 
that have too little amplifiable material. The function outlierSamples() will return a vector of sample 
names that have model-inferred template loadings less than a specified number of standard deviations 
(by default, 2) below the mean. The function takes as arguments the model produced by mcmc.qpcr() or 
mcmc.qpcr.lognormal()  (the choice of naïve model feels natural here) and the dataset that was used t fit 
the model. Here is an example based on the coral stress dataset. Note that the function mcmc.qpcr() is 
invoked with an additional option pr=TRUE to enable model predictions. 
 
library(MCMC.qpcr) 
data(coral.stress)  
str(coral.stress) 
data(amp.eff)  
genecolumns=c(5:19) # specifying where the Ct data are in the data table 
condcols=c(1:4) # specifying data table columns containing factors   
# converting to counts and reformatting: 
dd=cq2counts(data=coral.stress,genecols=genecolumns,condcols=condcols,effic=amp.eff)  
 
# Fitting naive model with pr=TRUE to enable predictions 
naive=mcmc.qpcr( 
 fixed="condition+timepoint+condition:timepoint", 
 random="individual", 
 data=dd, 
 pr=TRUE 
) 
 
# detecting outlier samples  
outs=outlierSamples(naive,dd) 
outs # "14" "26" 
# excluding outlier samples 
dd=dd[!(dd$sample %in% outs),] 

Extracting model predictions (“normalized data") 
For some studies such as discriminant function analysis or principal component analysis we would 
like to have our qPCR results in the form of model predictions without sample effects. Such data would 
correspond to efficiency-corrected and normalized data in a typical qPCR analysis involving multigene 
normalization. This is why the function that generates such data based on the linear mixed model fitted 
with mcmc.qpcr() or mcmc.qpcr.lognormal()  is called getNormalizedData().The function takes two 
arguments, the model and the data that was used to fit the model, and returns a list of two data frames. 
The first one, “normData”, is the model-predicted log2-transformed transcript abundances table with one 
column per gene and one row per sample. The second data frame, “conditions”, is a table of 
experimental conditions corresponding to the normData table. 

Below is an example of generating such data for our coral dataset (staring from scratch) and performing 
the principal component analysis on it (Fig. 12). Note that the function mcmc.qpcr() is invoked with an 
additional option pr=TRUE to enable model predictions. 
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library(MCMC.qpcr) 
data(coral.stress)  
str(coral.stress) 
data(amp.eff)  
genecolumns=c(5:19) # specifying where the Ct data are in the data table 
condcols=c(1:4) # specifying data table columns containing factors   
# converting to counts and reformatting: 
dd=cq2counts(data=coral.stress,genecols=genecolumns,condcols=condcols,effic=amp.eff)  
 
# Fitting "informed" model with pr=TRUE to enable predictions 
informed=mcmc.qpcr( 
 fixed="condition+timepoint+condition:timepoint", 
 controls=c("nd5","rpl11"), 
 random="individual", 
 data=dd, 
 pr=TRUE 
)  
# obtaining model predictions 
pp=getNormalizedData(informed,dd) 
 
# principal component analysis 
library(vegan) 
library(plotrix) 
pcp=prcomp(pp$normData, retx=TRUE, center=TRUE, scale.=TRUE)  
scores=pcp$x 
screeplot(pcp,bstick=T) # the broken stick model indicates that only the first PC is non-random 
plot(scores[,1], scores[,2],type="n") # creating an empty PCA plot 
# plotting data... You will have to edit the lines below depending on your data structure. 
points(scores[pp$conditions$condition=="control",1],scores[pp$conditions$condition=="control",2]
,pch=16,col="cyan3") 
points(scores[pp$conditions$condition=="heat",1],scores[pp$conditions$condition=="heat",2],pch=1
6,col="coral") 
points(scores[pp$conditions$timepoint=="one",1],scores[pp$conditions$timepoint=="one",2],pch=3,c
ol="grey50") 
 
 
  

 

 
Figure 12. Principal component analysis of the coral 
stress dataset based on model-derived transcript 
abundances (function getNormalizedData() ). Samples 
representing "control" and "heat" conditions are plotted 
in cyan and orange colors, respectively; the samples 
from timepoint one are marked with a grey cross. 
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