Your Instructors

<table>
<thead>
<tr>
<th>Name</th>
<th>Initials</th>
<th>Affiliation</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott Hunicke-Smith</td>
<td>SPHS</td>
<td>Director GSAF</td>
<td>Everything, if loosely defined (but especially awk)</td>
</tr>
<tr>
<td>Jeff Barrick</td>
<td>JB</td>
<td>Asst. Prof. Biochemistry</td>
<td>Microbes, Perl, C++, Mac, miscellanea</td>
</tr>
<tr>
<td>Dhivya Arasappan</td>
<td>DA</td>
<td>GSAF</td>
<td>RNA-seq, transcriptome assembly</td>
</tr>
<tr>
<td>Anna Battenhouse</td>
<td>AB</td>
<td>Iyer Lab</td>
<td>Eukaryotes, Bash scripting, UCSC Genome Browser</td>
</tr>
<tr>
<td>Daechan Park</td>
<td>DP</td>
<td>Iyer Lab</td>
<td>Eukaryotes, ChIP-seq, Python, Samtools</td>
</tr>
<tr>
<td>Nichole Bennett</td>
<td>NB</td>
<td>Parmesan/Singer Labs</td>
<td>Python, R, Unix</td>
</tr>
<tr>
<td>Dan Deatherage</td>
<td>DD</td>
<td>Barrick Lab</td>
<td>Unix, Python, NGS Library Prep</td>
</tr>
<tr>
<td>Nathan Abell</td>
<td>NA</td>
<td>Iyer Lab</td>
<td>Eukaryotes, RNA-Seq</td>
</tr>
</tbody>
</table>

Resources tool list, file formats & more

Link to Etherpad: https://etherpad.mozilla.org/g2NxIEAFWL

Use this to post any questions you have about the lessons and tutorials.

Instructor action item list

Info for the instructors

Day 1a: Scott 1b: Jeff
Day 2a: Jeff, Daechan, Anna, 2b: Scott
Day 3a: Jeff 3b: Iyer lab
Day 4a: Jeff, 4b: Scott

Instructors: meet 9am Monday for final check

Each Part 1/Part 2 section needs to be standardized with:

*Learning Objectives
Day 1: Linux/TACC Introduction and Read Mapping

Part 1: Linux/TACC Introduction

- General introduction (SPHS)
 - Introduction to Bioinformatics Prezi
- Linux refresher (SPHS)
 - Step 1: Start somewhere
 - Step 2: Establishing a profile on Lonestar
 - Step 3: Editing files
 - Step 4: Final explanations
- Using TACC’s Lonestar Cluster (SPHS)
 - Diagram of Lonestar’s directories
 - Diagram of running a job on Lonestar
 - Using SFTP for file browsing on Linux.
- Recap and “for further study”

Part 2: Read Mapping

- Introduction to next-gen sequencing technologies (JB)
 - Paper comparing NGS technologies (Liu et al., 2012)
 - Official Illumina video | Another Illumina video
 - Broad Center GA Boot Camp
- Variant calling workflow diagram:
 - (JB)
 - Mapping tutorial (bowtie, BWA, bowtie2) (JB)

Enrichment modules (4:30-5:30)

- Sharing Linux tricks - linux one-liners (SPHS)
- Working on TACC from your Mac or PC (AB)
 - Editing files, more detail

Extras

- Tutorial - Start diploid mapping for Day 2
- Running Unix & Perl for Biologists tutorial at TACC
- Installing Virtual machine & Linux on Windows (DP)

Day 2: Handling Raw and Aligned sequences, and Calling Genome Variants

Part 1. Handling Raw and Aligned sequences

- Overview and Resources
- Evaluating your raw sequencing data (AB)
 - GSAF adaptor and barcode sequence resource
Part 2. Calling Genome Variants

- Variant calling workflow diagram:

- Variant calling tutorial (SAMtools) (JB)
- Integrative Genomics Viewer (IGV) tutorial (JB)

Enrichment module (12:30-1:30)

- Shell Scripting (SPHS/AB)

Enrichment modules (4:30-5:30)

- Installing Linux tools (JB)

Extras

- Calling variants in diploid genomes (SPHS)
- Introduction to genome variation
- Variant calling with GATK (SPHS)
- Annotating variants (SPHS)

- Visualize mapped data at UCSC genome browser (AB)
- Genome variation in mixed samples (FreeBayes, deepSNV) (JB)
- Identifying structural variants (SVDetect) (JB)
- SRA toolkit (AB)

Day 3: RNA-seq

Part 1. Introduction to RNA-seq Counting

- Differential gene expression analysis (JB)

Part 2. The Tuxedo RNA-seq Pipeline (Tophat & Cufflinks)

- Differential expression with splice variant analysis

Enrichment module (12:30-1:30)

- Identifying mutations in microbial genomes (bresseq) (JB)

Enrichment modules (4:30-5:30)

- Start tophat by submitting to lonestar (DA)
Extras

- Visualize mapped data at UCSC genome browser (AB)
- non-coding RNA analysis

Day 4: Assembly and Annotation

Part 1. Genome Assembly

- [Image]
- Genome Assembly Examples (SPHS)
- Tutorial: Genome Assembly (velvet) (SPHS)

Part 2. Assembly Annotation

- Genome Annotation (Glimmer3) (SPHS)
- Evaluating & Visualizing assemblies (bacterial, SPHS)

Enrichment module (12:30-1:30)

- Office hours: "I want to learn how to install and use this tool called _____ that we didn't talk about in class." (JB).

Enrichment module (4:30-5:30)

- Transcriptome assembly & annotation
- Protein functional classification...
- Custom Genome Databases

Resources

- Scott's list of linux one-liners
- Example BWA alignment script
- Exercises
- Key take home points
- Resources tool list, file formats & more

As you're getting settled