Software

The following is a categorized list of software available through the UT GSAF and/or TACC's life sciences group. Each page lists a summary of the software, the hardware it is currently installed on, links to user documentation, and helpful tips.

Many of these are available via the TACC module system (use `module keyword` or `module spider` to search).

The current listing of modules and versions available on Lonestar is also posted here.

In addition, the BioITeam maintains executables in `/corral-repl/utexas/BioITeam/bin`; we advise adding this directory to your path.

Contents

- Getting an account of GSAF's Galaxy instance
 NOTE: Galaxy at this site is no longer actively supported.
- Getting an account on GSAF server-fourierseq
- Getting started with Unix and Perl
- Tips for working with TACC resources
- TACC Lonestar workflow scripts
- References (by organism)
- General purpose tools
- Galaxy Workflows
- Microarray data analysis tools
- NGS Data Quality Control Tools
- Mappers / Aligners
- Gene prediction tools
- SNP discovery
- RNA-Seq analysis
- Splice Junction discovery
- Genome Alignment and Visualization
- De novo assembly
- Transcriptome De novo assembly
- 454 Analysis tools
- Useful scripts
- Software users group meetings
- Variant calling
- ZOHO Information
- Extracting barcode split data from SOLID 5500 XSQ files
- R and R packages

Galaxy Workflows

- RNA-seq workflow
- BWA-SAMTOOLS workflow

General purpose tools

- Blast
- Bioconductor
- Bioperl
- BioMart Perl APIs
- NCBI Eutils
- R
- Python Library
- Graphics programs
- BOOST libraries
- Phred, Phrap, Consed, cross_match, daev
- Picard
- Hmmer
- Data compression programs
- Clustering programs - MCL and usearch, uclust
- ssh - generating keys

Microarray data analysis tools

- MeV

NGS Data Quality Control Tools

- Fastx Toolkit
- FastQC
- Get FASTQ Format

Mappers/Aligners

- mapreads SOLID data only, ungapped alignment
- MAQ - best for short-read SNP calling; ungapped alignment
• muscle - "old school" aligner - good for 454 amplicons
• SOAP - very fast and versatile: any read length, gapped, paired-end, SNP calling
• SSAHA & SSAHA2 - like Maq, fast for ungapped mapping - SNP calling, contig placement to reference, etc.
• Bowtie - very fast, ungapped alignment. Does not support color space data
• SHRiMP - A sensitive and accurate mapper. Supports color space data and gapped alignment.
• BFAST - BLAT-like short read mapper. Natively supports SOLiD colorspace short reads.
• BWA - The successor to MAQ; a BW mapper, but which allows for gaps and handles colorspace natively.
• GMAP and GSNAP - Mappers for cDNA and very sensitive detection of short indels.
• MosaiQ - A suite of alignment and reference-guided assembly tools.
• See Category:Mapper for more details.

Gene prediction tools
• GeneWise
• Geneid
• glimmer3

SNP discovery and Annotation
• Corona-Lite - SOLiD data only
• Breakdancer
• Genome Analysis Tool Kit (GATK)
• MAQ - best for short-read SNP calling; ungapped alignment
• Picard
• SOAP - very versatile: any read length, gapped, paired-end, SNP calling
• SAMTOOLS
• Annovar

RNA-Seq Analysis
• Tophat-Cufflinks-Cuffdiff, ignoring novel transcripts
• Tophat-Cufflinks-Cuffdiff, allowing for novel transcripts
• Removing duplicates from alignment output

Splice Junction discovery
• Tophat- Cufflinks

Genome Alignment and Visualization
• Circos
• IGV
• MaqView
• Mauve
• Affymetrix Integrated Genome Browser: easy to install genome browser. Download here
• SAMStat

De novo assembly
• MIRA
• Velvet
• ABYSS
• Using consed, including editing Mira assemblies
• ABI's SOLID de novo pipeline
• Phred, Phrap, Consed, cross_match, daev
• Allpaths-LG
• MosaiQ - A suite of alignment and reference-guided assembly tools.
• (Newbler, the Roche/454 assembler, is under 454 Analysis tools)

Transcriptome de novo assembly
• Trinity
• SOAPtrans

ABI pipelines
• Small RNA Pipeline

454 Analysis tools
Current Roche/454 software versions on Fourierseq are all 2.5.3. Tarballs of various 454 software versions are available at /home/daras/454sw*
• SFF file manipulation tools - Utilities to convert and manipulate 454 sff files.
• GS De novo assembler - Performs assembly of reads and generates contigs.
• GS Reference mapper - Maps reads to a reference genome and reports consensus and variants.
• GS Amplicon variant analyzer - For detection of variants in amplicon libraries : a small region of interest at very large coverage.
• GS Run processor and run browser - Generally run already by the GSAF, but you might want to re-process image data sometimes.
• Georgiou Lab Amplicon scripts - Matlab scripts...
• BLAST tools - Scripts for quick and dirty blasts of 454 reads and contigs to see what's going on at a global level
Useful scripts

- **Convert ABI SOLiD data to fasta fastq**
- **General parser scripts** - scripts for parsing and filtering of fasta, fastq files and output files from different mappers; base space, color space conversion scripts.
- **Small rna analysis**
- **Generation of wig files from mapreads output**
- **Conversion of mapreads output to GFF, SAM, or BAM format** - These utilities can be used to convert mapreads mapping output to base space format.
- **Generation of gene counts from results of mapping to genome** - These scripts can be used to identify the reads that correspond to genes, after mapping to the genome.
- **Get Tm (melting temperature), length, and %GC from a bunch of sequences**
- **Conversion of gene ID's from one form to another (i.e. NCBI to Ensembl & vice-versa)**
- **Quick tips on GO analysis**
- **Median polish to consolidate quantitations**
- **Make a quick venn diagram based on lists in 3 files**
- **Plot a read length histogram based on sequences in a fasta file**
- **Reverse complement for fasta files**
- **Tricks to preprocess SOLiD and 454 data**
- **Convert BLAST results to GFF**

Software users group meetings

- **Small rna data analysis** - Lessons learned during Sullivan data analysis
- **Mapping of short reads** - Comparison of few publicly available mapping tools