
Running batch jobs at TACC

Compute cluster overview
Lonestar5 and Stampede2 overview and comparison

Software at TACC
Programs and your $PATH
The module system

module spider
TACC BioContainers modules
loading a biocontainer module
installing custom software

Job Execution
SLURM at a glance
Simple example
Job parameters

launcher_creator.py
job name and commands file
queues and runtime
allocation and SUs
wayness (tasks per node)

Wayness example
Some best practices

Redirect task output and error streams
Combine serial workflows into scripts
Use one directory per job

Interactive sessions (idev)

Compute cluster overview

When you SSH into , your session is assigned to one of a small set of (also called). These are not the that ls5 login nodes head nodes compute nodes
will run your jobs.

Think of a node as a computer, like your laptop, but probably with more cores and memory. Now multiply that computer a thousand or more, and you have
a cluster.

The small set of login nodes are a shared resource (type the command to see everyone currently logged in) and are meant for running users not
interactive programs – for that you submit a description of what you want done to a batch system, which farms the work out to one or more compute nodes.

On the other hand, the login nodes intended for copying files to and from TACC, so they have of network bandwidth while compute nodes have are a lot
limited network bandwidth.

Reservations

Use our summer school () when submitting batch jobs to get higher priority on the normal queue during this reservation intro_NGS Lonestar5
course:

sbatch --reservation= <batch_file>.slurmintro_NGS

Note that a reservation is different from the TACC allocation/project for this class, which is .UT-2015-05-18

So follow these guidelines:

Do not perform substantial computation on the login nodes.
They are closely monitored, and you will get warnings from the TACC admin folks!
Code is usually developed and tested somewhere other than TACC, and only moved over when pretty solid.

Do not perform significant network access from your batch jobs.
Instead, stage your data onto $SCRATCH from a login node before submitting your job.

Lonestar5 and Stampede2 overview and comparison

Here is a comparison of the configurations and and . As you can see, is the larger cluster, launched in 2017.ls5 stampede2 stampede2

ls5 stampede2

login nodes 6

20 cores each
128 GB memory

6

28 cores each
128 GB memory

standard compute nodes 1,252

24 cores per node (48 virtual)
64 GB memory

4,200 KNL (Knights Landing)

68 cores per node (272 virtual)
96 GB memory

1,736 SKX (Skylake)

48 cores per node (96 virtual)
192 GB memory

large memory nodes 10 total

2 w/1 TB memory, 48 cores
8 w/512 GB RAM, 32 cores

--

batch system SLURM SLURM

maximum job run time 48 hours 96 hours on KNL nodes

48 hours on SKX nodes

Note the use of the term above. Compute cores are standalone processors – mini CPUs, each of which can execute separate sets of virtual core
instructions. However modern cores may also have enabled, where a single core can appear as more than one virtual processor to the hyper-threading
Operating system (see for more on hyper-threading). For example, nodes have 2 (https://en.wikipedia.org/wiki/Hyper-threading Lonestar5 hyperthreads H

) per core. So with 2 HTs for each of the 24 physical cores, each node has a total of 48 .Ts virtual cores

User guides for and can be found at: ls5 stampede2

https://portal.tacc.utexas.edu/user-guides/stampede2
https://portal.tacc.utexas.edu/user-guides/lonestar5

Unfortunately, the TACC user guides are aimed towards a different user community – the weather modelers and aerodynamic flow simulators who need
very fast matrix manipulation and other high performance computing (HPC) features. The usage patterns for bioinformatics – generally running 3rd party
tools on many different datasets – is rather a special case for HPC. TACC calls our type of processing " " and has a special process parameter sweep jobs
for running them, using ther module. launcher

Software at TACC

Programs and your $PATH

When you type in the name of an arbitrary program (for example), how does the shell know where to find that program? The answer is your . ls $PATH $PA
 is a pre-defined environment variable whose value is a list of directories.The shell looks for program names in that list, in the order the directories TH

appear.

To determine where the shell will find a particular program, use the command: which

Using which to search $PATH

which rsync
which cat

https://en.wikipedia.org/wiki/Hyper-threading
https://portal.tacc.utexas.edu/user-guides/stampede2
https://portal.tacc.utexas.edu/user-guides/lonestar5

The module system

The system is an incredibly powerful way to have literally thousands of software packages available, some of which are incompatible with each module
other, without causing complete havoc. The TACC staff builds the desired package from source code in well-known locations that are NOT on your .$PATH
Then, when a module is loaded, its binaries are added to your .$PATH

For example, the following command makes the aligner available to you:module load bwa

How module load affects $PATH

first type "bwa" to show that it is not present in your environment:
bwa
it's not on your $PATH either:
which bwa

now add bwa to your environment and try again:
module load bwa
bwa
and see how it's now on your $PATH:
which bwa
you can see the new directory at the front of $PATH
echo $PATH

to remove it, use "unload"
module unload bwa
bwa
gone from $PATH again...
which bwa

module spider

These days the TACC module system includes hundreds of useful bioinformatics programs. To see if your favorite software package has been installed at
TACC, use :module spider

module spider fastqc
module spider samtools
module spider bedtools

TACC BioContainers modules

It is quite a large systems administration task to install software at TACC and configure it for the module system. As a result, TACC was always behind in
making important bioinformatics software availble. To address this problem, TACC moved to providing bioinformatics software via , which are containers vi

 like and , but are lighter weight: they require less disk space because they rely more on the host's base Linux rtual machines VMware Virtual Box
environment. Specifically, TACC (and many other igh erformance omputing clusters) use containers, which are similar to containeH P C Singularity Docker
rs but are more suited to the HPC environment (in fact one can build a container then easily convert it to for use at TACC). Docker Singularity

TACC obtains its containers from (and), a large public repository of BioContainers https://biocontainers.pro/ https://github.com/BioContainers/containers
bioinformatics tool containers. This has allowed TACC to easily provision thousands of such tools! Singularity

These BioContainers are not visible in TACC's "standard" module system, but only after the master module is loaded: biocontainers

https://biocontainers.pro/
https://github.com/BioContainers/containers

Make sure the non-biocontainers version of bwa is not loaded
module unload bwa
Verify that bwa is not available
bwa

Verify that these programs are not in the standard TACC module system
module spider kallisto
module spider bowtie2
module spider minimap2
module spider multiqc
module spider GATK
module spider velvet

Load the Biocontainers master module (this takes a while)
module load biocontainers

Now look for those programs
module spider kallisto
module spider bowtie2
module spider minimap2
module spider multiqc
module spider GATK
module spider velvet

Notice how the module names have " " in their names, version numbers, and other identifying information.BioContainers ctr

loading a biocontainer module

Once the module has been loaded, you can just load the desired tool module, as with the pseudo-aligner program below. biocontainers kallisto

Load the Biocontainers master module
module load biocontainers

Load the default kallisto biocontainer
module load kallisto

Verify you can now execute kallisto
kallisto

Note that loading a BioContainer does not add anything to your . Instead, it defines an , which is just a shortcut for executing the command. $PATH alias
You can see the definition using the command. And you can ensure the program is available using the utility. alias type command -v

Note that kallisto has not been added to your $PATH
which kallisto

Instead, an alias has been defined. Use type to see its definition
type kallisto

Ensure kallisto is available with command -v
command -v kallisto

installing custom software

Even with all the tools available at TACC, inevitably you'll need something they don't have. In this case you can build the tool yourself and install it in a
local TACC directory. While building 3rd party tools is beyond the scope of this course, it's really not that hard. The trick is keeping it all organized.

For one thing, remember that your directory quota is fairly small (10 GB on), and that can fill up quickly if you install many programs. We $HOME ls5
recommend creating an installation area in your directory and installing programs there. You can then make symbolic links to the binaries you $WORK
need in your directory (which was added to your in your).$HOME/local/bin $PATH .bashrc

See how we used a similar trick to make the program available to you. Using the option shows you where symbolic links point to:launcher_creator.py ls -l

1.
2.

1.
2.
3.
4.
5.

6.
a.
b.
c.

Real location of launcher_creator.py

ls -l ~/local/bin

/work/projects/BioITeam/common/bin/launcher_creator.py

Job Execution

Job execution is controlled by the batch system on both and .SLURM ls5 stampede2

To run a job you prepare 2 files:

a file containing the commands to run, one command per line ()commands file <job_name>.cmds
a job control file that describes how to run the job ()<job_name>.slurm

The process of running the job involves these steps:

Create a commands file containing .exactly one command per line
Prepare a job control file for the commands file that describes how the job should be run.
You the job control file to the batch system. The job is then said to be to run. submit queued
The batch system the job based on the number of compute nodes needed and the job run time requested. prioritizes
When compute nodes become available, the job tasks (command lines in the file) are to one or more compute <job_name>.cmds assigned
nodes and in parallel.begin to run
The job when either: completes

you cancel the job manually
all tasks in the job complete (successfully or not!)
the requested job run time has expired

SLURM at a glance

Here are the main components of the batch system.SLURM

ls5, stampede2

batch system SLURM

batch control file name <job_name>.slurm

job submission command sbatch <job_name>.slurm

job monitoring command showq -u

job stop command scancel -n <job name>

Simple example

Let's go through a simple example. Execute the following commands to copy a pre-made commands file:simple.cmds

Copy simple commands

mkdir -p $SCRATCH/core_ngs/slurm/simple
cd $SCRATCH/core_ngs/slurm/simple
cp $CORENGS/tacc/simple.cmds .

What are the tasks we want to do? Each task corresponds to one line in the file, so let's take a look at it using the (con enate) simple.cmds cat cat
command that simply reads a file and writes each line of content to (here, your Terminal):standard output

$PATH caveat

Remember that the order of locations in the environment variable is the order in which the locations will be searched. In particular, the $PATH m
 command adds to the of your path. This can mask similarly-named programs, for example, in your directory.odule load front $HOME/local/bin

View simple commands

cat simple.cmds

The tasks we want to perform look like this:

echo "Command 1 on `hostname` - `date`" > cmd1.log 2>&1
echo "Command 2 on `hostname` - `date`" > cmd2.log 2>&1
echo "Command 3 on `hostname` - `date`" > cmd3.log 2>&1
echo "Command 4 on `hostname` - `date`" > cmd4.log 2>&1
echo "Command 5 on `hostname` - `date`" > cmd5.log 2>&1
echo "Command 6 on `hostname` - `date`" > cmd6.log 2>&1
echo "Command 7 on `hostname` - `date`" > cmd7.log 2>&1
echo "Command 8 on `hostname` - `date`" > cmd8.log 2>&1

There are 8 tasks. Each is a simple command that just outputs string containing the task number and date to a different file. echo

Use the handy program to create the job submission script.launcher_creator.py

Create batch submission script for simple commands

launcher_creator.py -j simple.cmds -n simple -t 00:00:05 -w 8 -a UT-2015-05-18 -q development

You should see output something like the following, and you should see a batch submission file in the current directory.simple.slurm

Project simple.
Using job file simple.cmds.
Using development queue.
For 00:00:05 time.
Using UT-2015-05-18 allocation.
Not sending start/stop email.
Launcher successfully created. Type "sbatch simple.slurm" to queue your job.

Submit your batch job like this, then check the batch queue to see the job's status.

Submit simple job to batch queue

sbatch --reservation=intro_NGS simple.slurm
showq -u

If you're quick, you'll see a queue status something like this:

SUMMARY OF JOBS FOR USER: <abattenh>

ACTIVE JOBS--------------------
JOBID JOBNAME USERNAME STATE NODES REMAINING STARTTIME
==
2916562 simple abattenh Running 1 0:00:57 Sat Jun 13 13:52:32

WAITING JOBS------------------------
JOBID JOBNAME USERNAME STATE NODES WCLIMIT QUEUETIME
==

Total Jobs: 1 Active Jobs: 1 Idle Jobs: 0 Blocked Jobs: 0

If you don't see your job in either the ACTIVE or WAITING sections of your queue, it probably already finished – it should only run for a second or simple
two!

Notice in my queue status, where the STATE is Running, there is only one node assigned. Why is this, since there were 8 tasks?

Every job, no matter how few tasks requested, will be assigned at least one node. Each node has 24 physical cores, so each of the 8 tasks can be ls5
assigned to a core.

Exercise: What files were created by your job?

ls should show you something like this:

cmd1.log cmd3.log cmd5.log cmd7.log simple.cmds simple.o2916562
cmd2.log cmd4.log cmd6.log cmd8.log simple.e2916562 simple.slurm

The newly created files are the files, as well as error and output logs and ..log simple.e2916562 simple.o2916562

filename wildcarding

Here's a cute trick for viewing the contents all your output files at once, using the command and filename wildcarding. cat

Multi-character filename wildcarding

cat cmd*.log

The command actually takes a list of one or more files (if you're giving it files rather than – more on this shortly) and outputs the cat standard input
concatenation of them to . The asterisk () in is a multi-character wildcard that matches any filename starting with then standard output * cmd .log* cmd
ending with . So it would match ..log cmd .log_hello_world

You can also specify single-character matches inside brackets () in either of the ways below, this time using the command so you can better see [] ls
what is matching:

Single character filename wildcarding

ls cmd[12345678].log
ls cmd[1-8].log

This technique is sometimes called , and the pattern a . Don't ask me why – it's a Unix thing. Globbing – translating a glob pattern filename globbing glob
into a list of files – is one of the handy thing the shell does for you. (Read more about .) bash Wildcards and special filenames

Exercise: How would you list all files starting with ?simple

ls simple*

Here's what my output looks like. Notice the times are all nearly the same because all the tasks ran in parallel. That's the power of cluster computing! cat

Command 1 on nid00022 - Sat Jun 13 13:52:52 CDT 2020
Command 2 on nid00022 - Sat Jun 13 13:52:47 CDT 2020
Command 3 on nid00022 - Sat Jun 13 13:52:58 CDT 2020
Command 4 on nid00022 - Sat Jun 13 13:52:53 CDT 2020
Command 5 on nid00022 - Sat Jun 13 13:52:41 CDT 2020
Command 6 on nid00022 - Sat Jun 13 13:52:49 CDT 2020
Command 7 on nid00022 - Sat Jun 13 13:52:40 CDT 2020
Command 8 on nid00022 - Sat Jun 13 13:52:48 CDT 2020

echo

Lets take a closer look at a typical task in the file.simple.cmds

An echo command

echo "Command 3 `date`" > cmd3.log 2>&1

The command is like a print statement in the shell. Echo takes its arguments and writes them to one line of . While not always echo bash standard output
required, it is a good idea to put the output string in double quotes.

backtick evaluation

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-WildcardsandspecialfilenamesWildcards

So what is this funny looking bit doing? Well, is just another Linux command (try just typing it in). Here we don't want the shell to put the string `date` date
"date" in the output, we want it to the command and put the text into the output. The backquotes (also called) around execute date result ` ` backticks
the command tell the shell we want that command executed and its output substituted into the string. (Read more about .)date Quoting in the shell

Backtick evaluation

These are equivalent:
date
echo `date`

But different from this:
echo date

output redirection

There's still more to learn from one of our simple tasks, something called :output redirection

echo "Command 3 `date`" > cmd3.log 2>&1

Normally writes its string to . If you invoke in an interactive shell like Terminal, standard output is displayed to the Terminal echo standard output echo
window.

Usually we want to of all our commands. Why is this important? Suppose we run a job with 100 commands, each one a whole separate the outputs
pipeline (alignment, for example). 88 finish fine but 12 do not. Just try figuring out which ones had the errors, and where the errors occurred, if all the
normal output is in one intermingled file and all the error in another intermingled file!

So in the above example the first ' ' says to redirect the of the command to the file. The ' ' part says to redirect > standard output echo cmd3.log 2>&1 stan
 to the same place. Technically, it says to redirect (built-in Linux stream) to the same place as (built-in Linux dard error standard error 2 standard output

stream); and since is going to , any will go there also. (Read more about .)1 standard output cmd3.log standard error Standard I/O streams

So what happens when output is generated by tasks in a batch job? Well, you may have noticed the files with names like simple.e2916562 and simple.
 were created by your job. contains all and contains all generated by your o2916562 simple.o2916562 standard output simple.o2916562 standard error

tasks that was not redirected elsewhere, as well as information relating to running your job and its tasks.

Job parameters

Now that we've executed a really simple job, let's take a look at some important job submission parameters. These correspond to arguments to the launch
script. er_creator.py

A bit of background. Historically, TACC was set up to cater to researchers writing their own C or Fortran codes highly optimized to exploit parallelism (the
HPC crowd). Much of TACC's documentation is aimed at this audience, which makes it difficult to pick out the important parts for us.

The kind of jobs we biologists generally run are relatively new to TACC. They even have a special name for them: " ", by which they parametric sweeps
mean the running on sets.same program different data

In fact there is a special software module required to run our jobs, called the module. You don't need to worry about activating the launcher launcher
module – that's done by the script created by like this:<job_name>.slurm launcher_creator.py

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Quotingintheshell
https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Standardstreams

module load launcher

The module knows how to interpret various job parameters in the batch submission script and use them to create launcher <job_name>.slurm SLURM
your job and assign its tasks to compute nodes. Our program is a simple Python script that lets you specify job parameters and launcher_ .pycreator
writes out a valid submission script.<job_name>.slurm

launcher_creator.py

If you call with no arguments it gives you its usage description:launcher_ .pycreator

launcher_creator.py usage

usage: launcher_creator.py [-h] -n NAME -t TIME_REQUEST [-j JOB_FILE]
 [-b SHELL_COMMANDS] [-B SHELL_COMMANDS_FILE]
 [-q QUEUE] [-a [ALLOCATION]] [-m MODULES]
 [-M MODULES_FILE] [-w WAYNESS] [-N NUM_NODES]
 [-e [EMAIL]] [-l LAUNCHER] [-s]

Create launchers for TACC clusters. Report problems to rt-other@ccbb.utexas.edu

optional arguments:
 -h, --help show this help message and exit

Required:
 -n NAME, --name NAME The name of your job.
 -t TIME_REQUEST, --time TIME_REQUEST
 The time you want to give to your job. Format:
 hh:mm:ss

Commands:
 You must use at least one of these options to submit your commands for
 TACC.

 -j JOB_FILE, --jobs JOB_FILE
 The name of the job file containing your commands.
 -b SHELL_COMMANDS, --bash SHELL_COMMANDS
 A string of shell (Bash, zsh, etc) commands that are
 executed before any parametric jobs are launched.
 -B SHELL_COMMANDS_FILE, --bash_file SHELL_COMMANDS_FILE
 A file containing shell (Bash, zsh, etc) commands that
 are executed before any parametric jobs are launched.

Optional:
 -q QUEUE, --queue QUEUE
 The TACC allocation for job submission.
 Default="development"
 -a [ALLOCATION], -A [ALLOCATION], --allocation [ALLOCATION]
 The TACC allocation for job submission. You can set a
 default ALLOCATION environment variable.
 -m MODULES, --modules MODULES
 A list of module commands. The "launcher" module is
 always automatically included. Example: -m "module
 swap intel gcc; module load bedtools"
 -M MODULES_FILE, --modules_file MODULES_FILE
 A file containing module commands.
 -w WAYNESS, --wayness WAYNESS
 Wayness: the number of commands you want to give each
 node. The default is the number of cores per node.
 -N NUM_NODES, --num_nodes NUM_NODES
 Number of nodes to request. You probably don't need
 this option. Use wayness instead. You ONLY need it if
 you want to run a job list that isn't defined at the
 time you submit the launcher.
 -e [EMAIL], --email [EMAIL]
 Your email address if you want to receive an email
 from Lonestar when your job starts and ends. Without
 an argument, it will use a default EMAIL_ADDRESS
 environment variable.
 -l LAUNCHER, --launcher_name LAUNCHER
 The name of the launcher script that will be created.
 Default="<name>.slurm"
 -s Echoes the launcher filename to stdout.

Because it is a long help message, we may want to pipe the output to , a that displays one screen of text at a time. Type the to more pager spacebar
advance to the next page, and to exit from .Ctrl-c more

Get usage information for launcher_creator.py

Use spacebar to page forward; Ctrl-c to exit
launcher_creator.py -h | more

job name and commands file

Recall how the batch file was created:simple.slurm

Create batch submission script for simple commands

launcher_creator.py -j simple.cmds -n simple -t 00:00:05 -w 8 -a UT-2015-05-18 -q developmen

The name of your is given with the argument.commands file -j simple.cmds
Your desired is given with the argument.job name -n <job_name>

The (here) is the you will see in your queue.<job_name> simple job name
By default a corresponding batch file is created for you.<job_name>.slurm

It contains the name of the commands file that the batch system will execute.

queues and runtime

TACC resources are partitioned into : a named set of compute nodes with different characteristics. The major ones on are listed below. queues ls5
Generally you use () when you are writing and testing your code, then once you're sure your commands will development -q development normal
execute properly.

queue name maximum runtime purpose

development 2 hrs development (short queue wait times)

normal 48 hrs normal priority (queue waits can sometimes be long)

largemem 48 hrs large memory jobs

In , the queue is specified by the argument. launcher_ .pycreator -q
The default queue is . Specify for queue jobs.development -q normal normal

The you are requesting for your job is specified by the argument.maximum runtime -t
Format is hh:mm:ss
Note that your job will be terminated at the end of its time limit!without warning

allocation and SUs

You may be a member of a number of different projects, hence have a choice which allocation to run your job under.

You specify that allocation name with the argument of .-a launcher_maker.py
If you have set an environment variable to an allocation name, it will be used if you are a member of only one TACC project.$ALLOCATION

The login script you've installed for this course specifies the class's allocation as shown below. Note that this allocation will expire after the .bashrc
course, so you should change that setting appropriately at some point.

ALLOCATION setting in .bashrc

This sets the default project allocation for launcher_maker.py
export ALLOCATION=UT-2015-05-18

When you run a batch job, your project allocation gets "charged" for the time your job runs, in the currency of s (System Units).SU

The script does not handle every job control parameter you might ever want to set. For that, make a copy of the launcher_creator.py
default script, found at , and edit it appropriately.$LAUNCHER_DIR/extras/batch-scripts/launcher.slurm

To read more about the module:launcher

module load launcher
module help launcher
more $LAUNCHER_DIR/README

SUs are related in some way to node hours.

wayness (tasks per node)

One of the most confusing things in job submission is the parameter called , which controls how many tasks are run on each computer node.wayness

Recall that there are 24 physical (48 virtual) cores and 64 GB of memory on each compute node
so technically you can run up to 48 commands on a node, each with ~1.3 GB available memory
you can run fewer tasks, and if you do, each task gets more resources

Because bioinformatics programs generally require more memory and fewer cores, sets a 24 cores/node maximum.launcher_creator.py

tasks per node (wayness) cores available to each task memory available to each task

1 24 64 GB

2 12 32 GB

3 8 21.3 GB

4 6 16 GB

6 4 10.6 GB

8 3 8 GB

12 2 5.3 GB

24 1 2.6 GB

In , is specified by the argument. launcher_creator.py wayness -w
the default is 24 (one task per core)

 A special case is when you have only 1 command in your job.
In that case, it doesn't matter what you request.wayness
Your job will run on one compute node, and have all 24 cores available.

Your choice of the parameter will depend on the nature of the work you are performing: its computational intensity, its memory requirements and wayness
its ability to take advantage of multi-processing/multi-threading (e.g. option or option). bwa -t tophat -p

Wayness example

Let's use to explore options. First copy over the commands file:launcher_creator.py wayness wayness.cmds

Copy wayness commands

cds
mkdir -p core_ngs/slurm/wayness
cd core_ngs/slurm/wayness
cp $CORENGS/tacc/wayness.cmds .

Exercise: How many tasks are specified in the wayness.cmds file?

wc --help

Find the number of lines in the commands file:wayness.cmds

ALLOCATION setting in .bashrc

wc -l wayness.cmds

The file has 24 lines, representing 24 tasks.

Jobs tasks should have similar expected runtimes

Jobs should consist of tasks that will run for approximately the same length of time. This is because the total node hours for your job is
calculated as the run time for your task (the one that finishes last).longest running

For example, if you specify 64 commands and 99 finish in 2 seconds but one runs for 24 hours, you'll be charged for 64 x 24 node hours even
though the total amount of work performed was only ~24 hours.

The commands file consists of a number of identical lines that look like this:wayness.cmds

sleep 3; echo "Command $LAUNCHER_JID of $LAUNCHER_NJOBS ($LAUNCHER_PPN per node) ran on node `hostname` core
$LAUNCHER_TSK_ID." > cmd.$LAUNCHER_JID.log 2>&1

The commands take advantage of a number of environment variables the module system sets automatically for each task: wayness launcher

$LAUNCHER_JID – the task number of the running task (from 1 to total number of tasks)
$LAUNCHER_NJOBS– total number of tasks specified by the job
$LAUNCHER_TSK_ID – number of the core running the task (0 to number of tasks - 1)

 hostname – Linux program that returns the name of the current compute node

For more information, see https://github.com/TACC/launcher

Create the batch submission script specifying a of 8 (8 tasks per node), then submit the job and monitor the queue: wayness

Create batch submission script for wayness example

launcher_creator.py -j wayness.cmds -n wayness -w 8 -t 00:00:20 -a UT-2015-05-18
sbatch --reservation=intro_NGS wayness.slurm
showq -u

Exercise: With 24 tasks requested and of 8, how many nodes will this job require? How much memory will be allocated to each task?wayness

3 nodes (24 tasks x 1 node/8 tasks)
16 GB (64 GB/node * 1 node/8 tasks)

 Exercise: If you specified a of 2, how many nodes would this job require? How much memory could each task use?wayness

12 nodes (24 tasks x 1 node/2 tasks)
32 GB (64 GB/node * 1 node/2 tasks)

Look at the output file contents once the job is done.

cat cmd*log

or, for a listing ordered by command number (the 2nd field, a number)
cat cmd*log | sort -k 2,2n

You should see something like output below.

Command 1 of 24 (8 per node) ran on node nid00020 core 0.
Command 2 of 24 (8 per node) ran on node nid00020 core 1.
Command 3 of 24 (8 per node) ran on node nid00020 core 2.
Command 4 of 24 (8 per node) ran on node nid00020 core 3.
Command 5 of 24 (8 per node) ran on node nid00020 core 4.
Command 6 of 24 (8 per node) ran on node nid00020 core 5.
Command 7 of 24 (8 per node) ran on node nid00020 core 6.
Command 8 of 24 (8 per node) ran on node nid00020 core 7.
Command 9 of 24 (8 per node) ran on node nid00021 core 8.
Command 10 of 24 (8 per node) ran on node nid00021 core 9.
Command 11 of 24 (8 per node) ran on node nid00021 core 10.
Command 12 of 24 (8 per node) ran on node nid00021 core 11.
Command 13 of 24 (8 per node) ran on node nid00021 core 12.
Command 14 of 24 (8 per node) ran on node nid00021 core 13.
Command 15 of 24 (8 per node) ran on node nid00021 core 14.
Command 16 of 24 (8 per node) ran on node nid00021 core 15.
Command 17 of 24 (8 per node) ran on node nid00022 core 16.
Command 18 of 24 (8 per node) ran on node nid00022 core 17.
Command 19 of 24 (8 per node) ran on node nid00022 core 18.
Command 20 of 24 (8 per node) ran on node nid00022 core 19.
Command 21 of 24 (8 per node) ran on node nid00022 core 20.
Command 22 of 24 (8 per node) ran on node nid00022 core 21.
Command 23 of 24 (8 per node) ran on node nid00022 core 22.
Command 24 of 24 (8 per node) ran on node nid00022 core 23.

Notice that there are 3 different host names, each of which ran 8 tasks:

https://github.com/TACC/launcher

cat cmd*log | awk '{print $11}' | sort | uniq -c

should produce this output (read more about)piping commands to make a histogram

 8 nid00020
 8 nid00021
 8 nid00022

Some best practices

Redirect task output and error streams

We've already touched on the need to redirect and for each task. Just remember that funny redirection syntax:standard output standard error

my_program input_file1 output_file1 > file1.log 2>&1

Combine serial workflows into scripts

Another really good way to work is to "bundle" a complex set of steps into a shell script that sets up its own environment, loads its own modules, then
executes a series of program steps. You can then just call that script, probably with data-specific arguments, in your commands file. This multi-program
script is sometimes termed a , pipeline although complex pipelines may involve several such scripts.

For example, you might have a script called (a script) or (written in) that performs multiple steps needed align_bwa.sh bash align_bowtie2.py python
during the alignment process:

quality checking the input fileFASTQ
trimming or removing adapters from the sequences
performing the alignment step(s) to create a fileBAM
sort the fileBAM
index the fileBAM
gather alignment statistics from the fileBAM

The BioITeam maintains a set of such scripts in the directory. Take a look at some of them after you feel more /work/projects/BioITeam/common/script
comfortable with initial NGS processing steps. They can be executed by anyone with a TACC account.

Use one directory per job

You may have noticed that all the files involved in our job were in one directory – the batch submissions file, commands file, log files our tasks wrote, and
the launcher job output and error files. Of course you'll probably need input files too as well as output files.

Because a single job can create a lot of files, it is a good idea to for each job or set of closely related jobs, maybe with a name use a different directory
similar to the job being performed. This will help you stay organized.

Here's an example directory structure

$SCRATCH/my_project
 /original # contains or links to original fastq files
 /fastq_prep # run fastq QC and trimming jobs here
 /alignment # run alignment jobs here
 /gene_counts # analyze gene overlap here
 /test1 # play around with stuff here
 /test2 # play around with other stuff here

Command files in each directory can refer to files in other directories using relative path syntax, e.g.:

Relative path syntax

cd $SCRATCH/my_project/fastq_prep
ls ../original/my_raw_sequences.fastq.gz

Or create a symbolic link to the directory and refer to it as a sub-directory:

Symbolic link to relative path

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-pipingahistogramPipe_Histogram

cd $SCRATCH/my_project/fastq_prep
ln -s ../original fq
ls ./fq/my_raw_sequences.fastq.gz

relative path syntax

As we have seen, there are several special "directory names" the bash shell understands:

"dot directory" () refers to "here" or "the current directory".
"dot dot directory" () refers to "one directory up"..
"tilde directory" () refers to your directory~ home

Try these relative path examples:

Relative path exercise

cd $SCRATCH/core_ngs/slurm/simple
ls ../wayness
ls ../..
ls -l ~/.bashrc

Interactive sessions (idev)

So we've explored the TACC batch system. What if you want to do some interactive-style testing of your workflow?

Interactive sessions are available through the command as shown below. sessions are configured with similar parameters to batch jobs. idev idev

Start an idev session

idev -p development -m 20 -A UT-2015-05-18 -N 1 -n 24 --reservation=intro_NGS

Notes:

-p development requests nodes on the queuedevelopment
-m 20 asks for a 20-minute session (120 minutes is the maximum for development)
-A UT-2015-05-18 specifies the TACC allocation/project to use
-N 1 asks for 1 node and requests access to 24 cores-n 24
--reservation=intro_NGS gives us priority access to TACC nodes for the class. You normally won't use this argument.

When you ask for an session, you'll see output as shown below. Note that the process may pause while it waits for available nodes. idev

 -> Defaults file : ~/.idevrc
 -> System : ls5
 -> Queue : development (cmd line: -p)
 -> Nodes : 1 (cmd line: -N)
 -> Total tasks : 24 (cmd line: -n)
 -> Time (minutes) : 20 (cmd line: -m)
 -> Project : UT-2015-05-1 (cmd line: -A)

 Welcome to the Lonestar 5 Supercomputer

No reservation for this job
--> Verifying valid submit host (login2)...OK
--> Verifying valid jobname...OK
--> Enforcing max jobs per user...OK
--> Verifying availability of your home dir (/home1/01063/abattenh)...OK
--> Verifying availability of your work dir (/work/01063/abattenh/lonestar)...OK
--> Verifying availability of your scratch dir (/scratch/01063/abattenh)...OK
--> Verifying valid ssh keys...OK
--> Verifying access to desired queue (development)...OK
--> Verifying job request is within current queue limits...OK
--> Checking available allocation (UT-2015-05-18)...OK
Submitted batch job 1579644

 -> After your idev job begins to run, a command prompt will appear,

 -> and you can begin your interactive development session.
 -> We will report the job status every 4 seconds: (PD=pending, R=running).

 ->job status: PD
 ->job status: R

 -> Job is now running on masternode= nid00011...OK
 -> Sleeping for 7 seconds...OK
 -> Checking to make sure your job has initialized an env for you....OK
 -> Creating interactive terminal session (login) on master node nid00011.

Warning: Permanently added '[nid00011]:6999,[10.128.0.12]:6999' (RSA) to the list of known hosts

Once the session has started, it looks quite similar to a login node environment, except for these differences: idev

the command on a login node will return a login server name like hostname login2
while in an session returns a compute node name like idev hostname nid00011

you cannot submit a batch job from inside an session, only from a login node idev
your session will end when the requested time has expired idev

or you can just type to return to a login node session exit

	Running batch jobs at TACC

