The Basic Alignment Workflow

® Overview
® Stage the alignment data
® Reference Genomes
® Exploring FASTA with grep
® Aligner overview
d Exeruse #1: BWA global alignment — Yeast ChlIP-seq
Overview ChlP-seq alignment workflow with BWA
® Introducing BWA
® Building the BWA sacCer3 index
® Performing the bwa alignment
® Using cut to isolate fields
® Exercise #2: Basic SAMtools Utilities
® samtools view
samtools sort
samtools index
samtools flagstat
samtools idxstats

Overview

fastq

[QC & trim raw reads

obtain reference
assembly

fastq i FastQC, cutadapt

bwa index l

bowtie2-build fasta [align reads to reference]
[build aligner-specific] SAM ‘L bwa ain + bwa samse or sampe

reference index bwa mem, or bowtie2
| convert SAMto BAM |

custom
binary index

BAM ¢ samtools view

[sort BAM by position

BAM ¢ samtools sort

AI i g nme l'lt [handle duplicates

(optional)

Wo rkfl OW ¢ F"icard MarkDuplicates
BAM samtools rmdup
l index BAM
BAM + .bai ¢ samtools index

 alignment metrics & QC |

samtools flagstat
samtools idxstat

After raw sequence files are generated (in FASTQ format), quality-checked, and pre-processed in some way, the next step in many NGS pipelines is
mapping to a reference genome.

For individual sequences it is common to use a tool like BLAST to identify genes or species of origin. However a normal NGS dataset will have tens to
hundreds of millions of sequences, which BLAST and similar tools are not designed to handle. Thus a large set of computational tools have been
developed to quickly align each read to its best location (if any) in a reference.

http://blast.ncbi.nlm.nih.gov/Blast.cgi

Even though many mapping tools exist, a few individual programs have a dominant "market share" of the NGS world. In this section, we will primarily focus
on two of the most versatile general-purpose ones: BWA and Bowtie2 (the latter being part of the Tuxedo suite which includes the transcriptome-aware
RNA-seq aligner Tophat2 as well as other downstream quantifiaction tools).

Stage the alignment data

First connect to stampede2.tacc.utexas.edu and start an idev session. This should be second nature by now ‘<

Start an idev session

idev -p normal -m 180 -A UT-2015-05-18 -N 1 -n 68

Then stage the sample datasets and references we will use.

Get the alignment exercises files

nkdir -p $SCRATCH core_ngs/references/fasta

nkdir -p $SCRATCH core_ngs/al i gnment/fastq

cp $CORENGS/references/*.fa $SCRATCH/ cor e_ngs/ r ef erences/ f ast a/
cp $CORENGS/ al i gnnent/ *f astg. gz $SCRATCH cor e_ngs/ al i gnnent/ f ast g/
cd $SCRATCH core_ngs/alignment/fastq

These are descriptions of the FASTQ files we copied:

File Name Description Sample
Sample_Yeast_L005_R1.cat.fastq.gz Paired-end lllumina, First of pair, FASTQ Yeast ChlP-seq

Sample_Yeast_L005_R2.cat.fastq.gz = Paired-end lllumina, Second of pair, FASTQ Yeast ChlP-seq

human_rnaseq.fastq.gz Paired-end lllumina, First of pair only, FASTQ = Human RNA-seq
human_mirnaseq.fastq.gz Single-end lllumina, FASTQ Human microRNA-seq
cholera_rnaseq.fastq.gz Single-end lllumina, FASTQ V. cholerae RNA-seq

Reference Genomes

Before we get to alignment, we need a reference to align to. This is usually an organism's genome, but can also be any set of names sequences, such
as a transcriptome or other set of genes.

Here are the four reference genomes we will be using today, with some information about them. These are not necessarily the most recent versions of
these references (e.g. the newest human reference genome is hg38 and the most recent miRBase annotation is v21. (See here for information about
many more genomes.)

Reference Species Base Length Contig Number Source Download
hg19 Human 3.1 Gbp 25 (really 93) ucsc UCSC GoldenPath
sacCer3 Yeast 12.2 Mbp 17 ucsc UCSC GoldenPath
mirbase v20 Human subset = 160 Kbp 1908 miRBase = miRBase Downloads
vibCho (0395) | Vibrio cholerae | ~4 Mbp 2 GenBank = GenBank Downloads

Searching genomes is computationally hard work and takes a long time if done on linear genomic sequence. So aligners require that references first be ind
exed to accelerate lookup. The aligners we are using each require a different index, but use the same method (the Burrows-Wheeler Transform) to get the
job done.

Building a reference index involves taking a FASTA file as input, with each contig (contiguous string of bases, e.g. a chromosome) as a separate FASTA
entry, and producing an aligner-specific set of files as output. Those output index files are then used to perform the sequence alignment, and alignments
are reported using coordinates referencing names and offset positions based on the original FASTA file contig entries.

We can quickly index the references for the yeast genome, the human miRNAs, and the V. cholerae genome, because they are all small, so we'll build
each index from the appropriate FASTA files right before we use them.

hg19 is way too big for us to index here so we will use an existing set of BWA hg19 index files located at:

http://en.wikipedia.org/wiki/Sequence_alignment_software
http://genomewiki.ucsc.edu/index.php/Hg19_Genome_size_statistics
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/
http://hgdownload.cse.ucsc.edu/goldenPath/sacCer3/bigZips/
http://www.mirbase.org/ftp.shtml
http://www.ncbi.nlm.nih.gov/nuccore/NC_012582
http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

BWA hg19 index location

/ wor k2/ proj ect s/ Bi ol Team r ef _genomne/ bwa/ bwt sw hg19

@ The BiolTeam maintains a set of reference indexes for many common organisms and aligners. They can be found in aligner-specific sub-
directories of the /work2/projects/BiolTeam/ref_genome area. E.g.:

/ wor k2/ proj ect s/ Bi ol Team r ef _genone/
bowt i e2/
bwa/
hi sat 2/
kal I'i st o/
star/
t ophat/

Exploring FASTA with grep

It is often useful to know what chromosomes/contigs are in a FASTA file before you start an alignment so that you're familiar with the contig naming
convention — and to verify that it's the one you expect. For example, chromosome 1 is specified differently in different references and organisms: chrl (US

CS human), chrl (UCSC yeast), or just 1 (Ensembl human GRCh37).

A FASTA file consists of a number of contig name entries, each one starting with a right carat (>) character, followed by many lines of base characters. E.
g.

>chr

CCACACCACACCCACACACCCACACACCACACCACACACCACACCACACC
CACACACACACATCCTAACACTACCCTAACACAGCCCTAATCTAACCCTG
GCCAACCTGTCTCTCAACTTACCCTCCATTACCCTGCCTCCACTCGTTAC
CCTGTCCCATTCAACCATACCACTCCGAACCACCATCCATCCCTCTACTT

How do we dig out just the lines that have the contig names and ignore all the sequences? Well, the contig name lines all follow the pattern above, and
since the > character is not a valid base, it will never appear on a sequence line.

We've discovered a pattern (also known as a regular expression) to use in searching, and the command line tool that does regular expression matching
is grep (general regular expression parser). Read more about grep here: Advanced commands: grep.

Regular expressions are so powerful that nearly every modern computer language includes a "regex" module of some sort. There are many online tutorials
for regular expressions, and several slightly different "flavors" of them. But the most common is the Perl style (http://perldoc.perl.org/perlretut.html), which
was one of the fist and still the most powerful (there's a reason Perl was used extensively when assembling the human genome). We're only going to use
the most simple of regular expressions here, but learning more about them will pay handsome dividends for you in the future.

Here's how to execute grep to list contig names in a FASTA file.

grep to match contig names in a FASTA file

cd $SCRATCH core_ngs/references/fasta
grep -P '~>'" sacCer3.fa | nore

Notes:

® The -P option tells grep to Perl-style regular expression patterns.
® This makes including special characters like Tab (\t), Carriage Return (\r) or Linefeed (\n) much easier that the default POSIX
paterns.
® While it is not required here, it generally doesn't hurt to include this option.
® '>'js the regular expression describing the pattern we're looking for (described below)
® sacCer3.fais the file to search.
® lines with text that match our pattern will be written to standard output
® non matching lines will be omitted
® We pipe to more just in case there are a lot of contig names.

Now down to the nuts and bolts of the pattern: '*>'

First, the single quotes around the pattern — this tells the bash shell to pass the exact string contents to grep.

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-GREP
http://perldoc.perl.org/perlretut.html

As part of its friendly command line parsing and evaluation, the shell will often look for special characters on the command line that mean something to it
(for example, the $ in front of an environment variable name, like in $SCRATCH). Well, regular expressions treat the $ specially too — but in a completely
different way! Those single quotes tell the shell "don't look inside here for special characters — treat this as a literal string and pass it to the program". The
shell will obey, will strip the single quotes off the string, and will pass the actual pattern, >, to the grep program. (Note that the shell does look inside
double quotes (") for certain special signals, such as looking for environment variable names to evaluate. Read more about Quoting in the shell.)

So what does *> mean to grep? We know that contig name lines always start with a > character, so > is a literal for grep to use in its pattern match.

We might be able to get away with just using this literal alone as our regex, specifying '>' as the command line argument. But for grep, the more specific
the pattern, the better. So we constrain where the > can appear on the line. The special carat (*) metacharacter represents "beginning of line". So *>m
eans "beginning of a line followed by a > character".

Exercise: How many contigs are there in the sacCer3 reference?

Get the alignment exercises files

nkdir -p $SCRATCH core_ngs/references/fasta
cp $CORENGS/ ref erences/*. fa $SCRATCH core_ngs/ ref erences/ f ast a/

cd $SCRATCH core_ngs/references/fasta
grep -P '~>' sacCer3.fa | we -|

Or use grep's -c option that says "just count the line matches"

grep -P -c '~>'" sacCer3.fa

There are 17 contigs.

Aligner overview

There are many aligners available, but we will concentrate on two of the most popular general-purpose ones: bwa and bowtie2. The table below outlines
the available protocols for them.

alignment aligner pro's con's
type options

global with bwa = SE:
® simple to use (take default options) ® multiple steps needed
® bwaaln ® good for basic global alignment
<R1>
®* bwa
samse

PE:

® bwaaln
<R1>

® bwaaln
<R2>

®* bwa
sampe

global with bowt = bowtie2 --
ie2 global

extremely configurable ® complex (many options)
can be used for RNAseq alignment (after adapter trimming) because of its
many options

local with bwa bwa mem

® simple to use (take default options) ® always produces alignments with
® very fast secondary reads

® no adapter trimming needed ® must be filtered if not desired
L]

good for simple RNAseq analysis
® the secondary alignments it reports provide splice junction
information

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-shell_quoting

local with bowti ' bowtie2 --local

e2 ® extremely configurable ® complex — many options
® no adapter trimming needed
® good for small RNA alignment because of its many options

Exercise #1: BWA global alignment — Yeast ChlP-seq

Overview ChIP-seq alignment workflow with BWA
We will perform a global alignment of the paired-end Yeast ChIP-seq sequences using bwa. This workflow has the following steps:

1. Trim the FASTQ sequences down to 50 with fastx_clipper

® this removes most of any 5' adapter contamination without the fuss of specific adapter trimming w/cutadapt
. Prepare the sacCer3 reference index for bwa using bwa index

® this is done once, and re-used for later alignments
. Perform a global bwa alignment on the R1 reads (bwa aln) producing a BWA-specific binary .sai intermediate file
. Perform a global bwa alignment on the R2 reads (bwa aln) producing a BWA-specific binary .sai intermediate file
. Perform pairing of the separately aligned reads and report the alignments in SAM format using bwa sampe
Convert the SAM file to a BAM file (samtools view)
. Sort the BAM file by genomic location (samtools sort)
. Index the BAM file (samtools index)
. Gather simple alignment statistics (samtools flagstat and samtools idxstat)

N

© o~ U AW

We're going to skip the trimming step for now and see how it goes. We'll perform steps 2 - 5 now and leave samtools for a later exercise since steps 6 -
10 are common to nearly all post-alignment workflows.

Introducing BWA

Like other tools you've worked with so far, you first need to load bwa. Do that now, and then enter bwa with no arguments to view the top-level help page
(many NGS tools will provide some help when called with no arguments). Note that bwa is available both from the standard TACC module system and as B
ioContainers. module.

Start an idev session
idev -p normal -m 120 -A UT-2015-05-18 -N 1 -n 68
nodul e | oad bi ocontainers # takes a while

nodul e | oad bwa
bwa

BWA suite usage

Program bwa (alignnent via Burrows-Weel er transformation)
Version: 0.7.17-r1188
Contact: Heng Li <l h3@anger. ac. uk>

Usage: bwa <command> [opti ons]
Command: i ndex i ndex sequences in the FASTA fornat
mem BWA- MEM al gorithm
f ast map identify super-maximal exact matches
pener ge mer ge overl appi ng paired ends (EXPERI MENTAL)
aln gapped/ ungapped al i gnnment
sanse generate alignment (single ended)
sanpe generate alignment (paired ended)
bwasw BWA- SWfor |ong queries
shm manage indices in shared nenory
fa2pac convert FASTA to PAC fornat
pac2bwt generate BWI from PAC
pac2bwt gen alternative algorithmfor generating BW
bwt updat e update .bwt to the new format
bwt 2sa generate SA from BW and Ccc

Note: To use BWA, you need to first index the genone with ~bwa index'.
There are three alignnment algorithms in BWA: “nmeni, ~bwasw, and
“al n/sanmse/ sanpe' . If you are not sure which to use, try “~bwa nmeni
first. Please "man ./bwa. 1" for the nanual.

As you can see, bwa include many sub-commands that perform the tasks we are interested in.

Building the BWA sacCer3 index
We will index the genome with the bwa index command. Type bwa index with no arguments to see usage for this sub-command.
bwa index usage

Usage: bwa i ndex [options] <in.fasta>

Options: -a STR BWI construction algorithm bwsw, is or rb2 [auto]

-p STR prefix of the index [same as fasta nane]
-b INT bl ock size for the bwtsw algorithm (effective with -a bwtsw) [10000000]
-6 index files naned as <in.fasta> 64.* instead of <in.fasta>. *

Warning: “-a bwtsw does not work for short genomes, while "-a is' and

-a div' do not work not for |ong genones.

Based on the usage description, we only need to specify two things:

® The name of the FASTA file
® Whether to use the bwtsw or is algorithm for indexing

Since sacCer3 is relative large (~12 Mbp) we will specify bwtsw as the indexing option (as indicated by the "Warning" message), and the name of the FAS
TA file is sacCer3.fa.

The output of this command is a group of files that are all required together as the index. So, within our references directory, we will create another
directory called references/bwa/sacCer3 and build the index there. To remind ourselves which FASTA was used to build the index, we create a symbolic
link to our references/fasta/sacCer3.fa file (note the use of the ../.. relative path syntax).

Get the alignment exercises files

nkdir -p $SCRATCH core_ngs/al i gnment/fastq

nkdir -p $SCRATCH core_ngs/references/fasta

cp $CORENGS/ al i gnnent/ *f astq. gz $SCRATCH cor e_ngs/ al i gnnent/ f ast g/
cp $CORENGS/ ref erences/*. fa $SCRATCH core_ngs/ref erences/ fastal

Prepare BWA reference directory for sacCer3

nkdir -p $SCRATCH core_ngs/references/bwa/ sacCer 3
cd $SCRATCH core_ngs/ references/ bwa/ sacCer 3

In-s ../../fasta/sacCer3.fa

I's -1

Now execute the bwa index command.

Build BWA index for sacCer3

bwa i ndex -a bwtsw sacCer3.fa

Since the yeast genome is not large when compared to human, this should not take long to execute (otherwise we would do it as a batch job). When it is
complete you should see a set of index files like this:

BWA index files for sacCer3

sacCer3.fa

sacCer 3. fa. anb
sacCer 3. fa. ann
sacCer 3. fa. bwt
sacCer 3. fa. pac
sacCer 3.fa. sa

Performing the bwa alignment

Now, we're ready to execute the actual alignment, with the goal of initially producing a SAM file from the input FASTQ files and reference. First prepare a
directory for this exercise and link the sacCer3 reference directories there (this will make our commands more readable).

Copy the pre-built references
nkdir -p $SCRATCH core_ngs/references
cp $CORENGS/references/*.fa $SCRATCH core_ngs/ references/fastal

Get the FASTQ to align

nkdir -p $SCRATCH core_ngs/ al i gnment/fastq
cp $CORENGS/ al i gnnent/ *fastq. gz $SCRATCH cor e_ngs/ al i gnnent/ f ast g/

Prepare to align yeast data

nkdir -p $SCRATCH core_ngs/ al i gnment/yeast _bwa
cd $SCRATCH core_ngs/ al i gnment/yeast _bwa

In-s -f ../fastq

In-s -f ../../references/bwa/sacCer3

As our workflow indicated, we first use bwa aln on the R1 and R2 FASTQs, producing a BWA-specific .sai intermediate binary files.

What does bwa aln needs in the way of arguments?

bwa al n

There are lots of options, but here is a summary of the most important ones.

Option Effect

-l Specifies the length of the seed (default = 32)

-k Specifies the number of mismatches allowable in the seed of each alignment (default = 2)

-n Specifies the number of mismatches (or fraction of bases in a given alignment that can be mismatches) in the entire alignment (including
the seed) (default = 0.04)

-t Specifies the number of threads

Other options control the details of how much a mismatch or gap is penalized, limits on the number of acceptable hits per read, and so on. Much more
information can be found on the BWA manual page.

For a basic alignment like this, we can just go with the default alignment parameters.
Note that bwa writes its (binary) output to standard output by default, so we need to redirect that to a .sai file.

For simplicity, we will just execute these commands directly, one at a time. Each command should only take few minutes and you will see bwa's progress
messages in your terminal.

bwa aln commands for yeast R1 and R2

1f not already |oaded:
nmodul e | oad bi ocont ai ners
nodul e | oad bwa

cd $SCRATCH core_ngs/ al i gnment/ yeast _bwa

bwa al n sacCer 3/ sacCer3.fa fastq/ Sanpl e_Yeast _L005_R1.cat.fastqg.gz > yeast_RIl. sai
bwa al n sacCer 3/ sacCer3.fa fastq/ Sanpl e_Yeast _LO05_R2. cat.fastq.gz > yeast_R2. sai

When all is done you should have two .sai files: yeast_R1.sai and yeast_R2.sai.

@ Make sure your output files are not empty

Double check that output was written by doing Is -lh and making sure the file sizes listed are not 0.

Exercise: How long did it take to align the R2 file?

The last few lines of bwa's execution output should look something like this:

[bwa_al n] 17bp reads: max_diff = 2

[bwa_al n] 38bp reads: nax_diff = 3

[bwa_al n] 64bp reads: max_diff = 4

[bwa_al n] 93bp reads: nmax_diff =5

[bwa_al n] 124bp reads: nmax_diff =6

[bwa_al n] 157bp reads: max_diff =7

[bwa_al n] 190bp reads: nax_diff = 8

[bwa_al n] 225bp reads: nmax_diff = 9

[bwa_al n_core] calculate SA coordinate... 50.76 sec
[bwa_al n_core] wite to the disk... 0.07 sec

[bwa_al n_core] 262144 sequences have been processed.
[bwa_al n_core] cal culate SA coordinate... 50.35 sec
[bwa_al n_core] wite to the disk... 0.07 sec

[bwa_al n_core] 524288 sequences have been processed.
[bwa_al n_core] cal culate SA coordinate... 13.64 sec
[bwa_al n_core] wite to the disk... 0.01 sec

[bwa_al n_core] 592180 sequences have been processed.
[main] Version: 0.7.17-r1188

[main] CVD: /usr/local/bin/bwa aln sacCer3/sacCer3.fa fastqg/ Sanpl e_Yeast_L005_R1. cat.fastq.gz
[main] Real tinme: 122.936 sec; CPU. 123.597 sec

So the R2 alignment took ~123 seconds (~2 minutes).

Since you have your own private compute node, you can use all its resources. It has 68 cores, so re-run the R2 alignment asking for 60 execution threads.

bwa aln -t 60 sacCer3/sacCer3.fa fastqg/ Sanpl e_Yeast_L005_R2.cat.fastq.gz > yeast_R2.sai

Exercise: How much of a speedup did you seen when aligning the R2 file with 20 threads?

The last few lines of bwa's execution output should look something like this:

http://bio-bwa.sourceforge.net/bwa.shtml

bwa_al n] 17bp reads: max_diff =
bwa_al n] 38bp reads: max_diff =
bwa_al n] 64bp reads: nax_diff =
bwa_al n] 93bp reads: max_diff =
bwa_al n] 124bp reads: max_diff = 6
bwa_al n] 157bp reads: max_diff =7
bwa_al n] 190bp reads: max_diff = 8
bwa_al n] 225bp reads: max_diff = 9

g~ wWwN

bwa_al n_core] cal cul ate SA coordinate... 266.70 sec
bwa_al n_core] wite to the disk... 0.04 sec

bwa_al n_core] 262144 sequences have been processed.
bwa_al n_core] cal cul ate SA coordinate... 268.94 sec
bwa_al n_core] wite to the disk... 0.03 sec

bwa_al n_core] 524288 sequences have been processed.
bwa_al n_core] cal culate SA coordinate... 72.26 sec

bwa_al n_core] wite to the disk... 0.01 sec

bwa_al n_core] 592180 sequences have been processed.

main] Version: 0.7.17-r1188

main] CMD: /usr/local/bin/bwa aln -t 60 sacCer3/sacCer3.fa fastqg/ Sanpl e_Yeast_L005_R2. cat.fastq.gz
main] Real tine: 19.872 sec; CPU. 617.095 sec

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
So the R2 alignment took only ~20 seconds (real time), or 6+ times as fast as with only one processing thread.

Note, though, that the CPU time with 60 threads was greater (617 sec) than with only 1 thread (124 sec). That's because of the thread management
overhead when using multiple threads.

Next we use the bwa sampe command to pair the reads and output SAM format data. Just type that command in with no arguments to see its usage.

For this command you provide the same reference index prefix as for bwa aln, along with the two .sai files and the two original FASTQ files. Also, bwa writ
es its output to standard output, so redirect that to a .sam file.

Here is the command line statement you need. Just execute it on the command line.

Pairing of BWA R1 and R2 aligned reads

bwa sanpe sacCer 3/sacCer3.fa yeast_Rl.sai yeast_R2.sai \
fast g/ Sanpl e_Yeast _L005_R1.cat.fastqg.gz \
fast g/ Sanpl e_Yeast L005_R2.cat.fastq.gz > yeast_pairedend. sam

You should now have a SAM file (yeast_pairedend.sam) that contains the alignments. It's just a text file, so take a look with head, more, less, tail, or
whatever you feel like. Later you'll learn additional ways to analyze the data with samtools once you create a BAM file.

Exercise: What kind of information is in the first lines of the SAM file?
The SAM file has a number of header lines, which all start with an at sign (@).
The @SQ lines describe each contig (chromosome) and its length.
There is also a @PG line that describes the way the bwa sampe was performed.
Exercise: How many alignment records (not header records) are in the SAM file?

This looks for the pattern '"*HWI' which is the start of every read name (which starts every alignment record).
Remember -c says just count the records, don't display them.

grep -P -c '"HW' yeast_pairedend. sam

Or use the -v (invert) option to tell grep to print all lines that don't match a particular pattern; here, all header lines, which start with @.

grep -P -v -¢c '@ yeast_pairedend. sam

There are 1,184,360 alignment records.

Exercise: How many sequences were in the R1 and R2 FASTQ files combined?

zcat fastq/ Sanple_Yeast_LO005_R[12].cat.fastq.gz | w -1 | awk '{print $1/4}'

There were a total of 1,184,360 original sequences (R1s + R2s)
Exercises:
® Do both R1 and R2 reads have separate alignment records?

® Does the SAM file contain both mapped and un-mapped reads?
®* What is the order of the alignment records in this SAM file?

Both R1 and R2 reads must have separate alignment records, because there were 1,184,360 R1+R2 reads and the same number of alignment

records.

The SAM file must contain both mapped and un-mapped reads, because there were 1,184,360 R1+R2 reads and the same number of alignment

records.

Alignment records occur in the same read-name order as they did in the FASTQ, except that they come in pairs. The R1 read comes 1st, then the
corresponding R2. This is called read name ordering.

Using cut to isolate fields

Recall the format of a SAM alignment record:

Col__Field = Type Regexp/Range Brief description

L1 __QNAME| String [!-7A-"]{1,255} Query template NAME read nhame from fastq

1 2 FLAG | Int [0,2'°-1] bitwise FLAGS
3 RNAME | String *|[!-Q+-<=-"][1-"]* Reference sequence NAME contig + start
4 POS Int [0,2%%-1] 1-based leftmost mapping POSition =locus
5 MAPQ Int [0,2°-1] MAPping Quality
t CIGAR String *| ([0-9]+[MIDNSHPX=])+ CIGAR string wuse this to find end coordinate
¢ RNEXI String *I=|['=()+-<>-"]1['-"1* Ref. name of the mate/next segment

8 PNEXT Int
10 SEQ String
11 QUAL String

[0,2%%-1]
[-2%2+1,2%-1]
*| [A-Za-z=.]+
-1+

Position of the mate/next segment

observed Template LENgth insert size, if paired
segment SEQuence

ASCII of Phred-scaled base QUALity+33

Suppose you wanted to look only at field 3 (contig name) values in the SAM file. You can do this with the handy cut command. Below is a simple example
where you're asking cut to display the 3rd column value for the last 10 alignment records.

Cut syntax for a single field

tail

yeast _pairedend. sam| cut

-f 3

By default cut assumes the field delimiter is Tab, which is the delimiter used in the majority of NGS file formats. You can specify a different delimiter with

the -d option.

You can also specify a range of fields, and mix adjacent and non-adjacent fields. This displays fields 2 through 6, field 9:

Cut syntax for multiple fields

tail

-20 yeast _pai redend. sam |

cut -f 2-6,9

You may have noticed that some alignment records contain contig names (e.g. chrV) in field 3 while others contain an asterisk (*). The * means the
record didn't map. We're going to use this heuristic along with cut to see about how many records represent aligned sequences. (Note this is not the strictly
correct method of finding unmapped reads because not all unmapped reads have an asterisk in field 3. Later you'll see how to properly distinguish
between mapped and unmapped reads using samtools.)

First we need to make sure that we don't look at fields in the SAM header lines. We're going to end up with a series of pipe operations, and the best way to
make sure you're on track is to enter them one at a time piping to head:

Grep pattern that doesn't match header

the "@pattern matches lines starting with @(only header |ines),
and -v says output lines that don't match
grep -v -P '@ yeast_pairedend. sam| head

Ok, it looks like we're seeing only alignment records. Now let's pull out only field 3 using cut:

Get contig name info with cut

grep -v -P '@ vyeast_pairedend.sam| cut -f 3 | head

Cool, we're only seeing the contig name info now. Next we use grep again, piping it our contig info and using the -v (invert) switch to say print lines that do
n't match the pattern:

Filter contig name of * (unaligned)

grep -v -P '@ yeast_pairedend.sam| cut -f 3 | grep -v '*' | head

Perfect! We're only seeing real contig names that (usually) represent aligned reads. Let's count them by piping to wc -l (and omitting omit head of course —
we want to count everything).

Count aligned SAM records

grep -v -P '@ yeast_pairedend.sam| cut -f 3 | grep -v '*" | wc -I

Exercise: About how many records represent aligned sequences? What alignment rate does this represent?

The expression above returns 612,968. There were 1,184,360 records total, so the percentage is:

Calculate alignment rate

awk ' BEG N{print 612968/ 1184360}

or about 51%. Not great.

Note we perform this calculation in awk's BEGIN block, which is always executed, instead of the body block, which is only executed for lines of input.
And here we call awk without piping it any input. See Linux fundamentals: cut,sort,uniq,grep,awk

Exercise: What might we try in order to improve the alignment rate?

Recall that these are 100 bp reads and we did not remove adapter contamination. There will be a distribution of fragment sizes — some will be short —
and those short fragments may not align without adapter removal (e.g. with fastx_trimmer).

Exercise #2: Basic SAMtools Utilities

The SAMtools program is a commonly used set of tools that allow a user to manipulate SAM/BAM files in many different ways, ranging from simple tasks
(like SAM/BAM format conversion) to more complex functions (like sorting, indexing and statistics gathering). It is available in the TACC module system
(as well as in BioContainers). Load that module and see what samtools has to offer:

Start an idev session

idev -p normal -m 120 - A UT-2015-05-18 -N 1 -n 68

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-cut,sort,uniq,grep,awk
http://samtools.sourceforge.net/

If not already |oaded
nmodul e | oad biocontainers # takes a while

nodul e | oad santool s
sant ool s

SAMtools suite usage

Program santools (Tools for alignnents in the SAM fornat)
Version: 1.10 (using htslib 1.10)

Usage: sant ool s <command> [opti ons]
Conmmands:

-- I ndexing
di ct create a sequence dictionary file
fai dx i ndex/ extract FASTA
fqi dx i ndex/ extract FASTQ
i ndex i ndex al i gnnment

-- Editing
cal md recal culate MO NM tags and '=' bases
fixmate fix mate information
reheader repl ace BAM header
t ar get cut cut fosmd regions (for fosmd pool only)
addr epl acerg adds or replaces RG tags
mar kdup mark duplicates

-- File operations
collate shuffl e and group alignnments by nane
cat concat enat e BAMs
ner ge nerge sorted alignnments
npi | eup mul ti-way pileup
sort sort alignment file
split splits a file by read group
qui ckcheck qui ckly check if SAM BAM CRAM fil e appears intact
fastq converts a BAMto a FASTQ
fasta converts a BAMto a FASTA

-- Statistics
bedcov read depth per BED region
cover age al i gnnent depth and percent coverage
depth conpute the depth
fl agst at sinple stats
i dxstats BAM i ndex stats
phase phase het erozygot es
stats generate stats (fornmer bantheck)

-- View ng
flags expl ain BAM fl ags
tview text alignment viewer
Vi ew SAMK- >BAMK- >CRAM conver si on
depad convert padded BAMto unpadded BAM

In this exercise, we will explore five utilities provided by samtools: view, sort, index, flagstat, and idxstats. Each of these is executed in one line for a
given SAM/BAM file. In the SAMtools/BEDtools sections tomorrow we will explore samtools in more in depth.

@ Know your samtools version!
There are two main "eras" of SAMtools development:

® “original" samtools
® v 0.1.19 is the last stable version

® "modern" samtools
® v10,1.1,1.2 - avoid these (very buggy!)
® v 1.3+ —finally stable!

Unfortunately, some functions with the same name in both version eras have different options and arguments! So be sure you know which
version you're using. (The samtools version is usually reported at the top of its usage listing).

TACC BioContainers also offers the original samtools version: samtools/ctr-0.1.19--3.

samtools view

The samtools view utility provides a way of converting between SAM (text) and BAM (binary, compressed) format. It also provides many, many other
functions which we will discuss Ister. To get a preview, execute samtools view without any other arguments. You should see:

samtools view usage

Usage: santools view [options] <in.banp|<in.sanmp|<in.cram> [region ...]
Opti ons:

-b out put BAM

-C output CRAM (requires -T)

-1 use fast BAM conpression (inplies -b)

-u unconpr essed BAM out put (inplies -b)

-h incl ude header in SAM out put

-H print SAM header only (no alignnents)

-C print only the count of matching records

-0 FILE output file name [stdout]

-U FILE output reads not selected by filters to FILE [null]

-t FILE FILE listing reference nanes and lengths (see long help) [null]
-X include custom zed index file

-L FILE only include reads overlapping this BED FILE [null]

-r STR only include reads in read group STR [null]

-R FILE only include reads with read group listed in FILE [null]

-d STR STR
only include reads with tag STR and associ ated val ue STR [nul|]
-D STR FI LE
only include reads with tag STR and associ ated values listed in
FILE [nul I]

-g INT only include reads with mapping quality >= INT [O]

-1 STR only include reads in library STR [null]

-mINT only include reads with nunmber of Cl GAR operations consuni ng
query sequence >= | NT [O]

-f INT only include reads with all of the FLAGs in INT present [O0]

-F INT only include reads with none of the FLAGS in |INT present [0]

-G INT only EXCLUDE reads with all of the FLAGs in INT present [O0]

-s FLOAT subsanpl e reads (given |INT. FRAC option value, 0.FRAC is the
fraction of tenplates/read pairs to keep; INT part sets seed)

-M use the nulti-region iterator (increases the speed, renoves
duplicates and outputs the reads as they are ordered in the file)

-x STR read tag to strip (repeatable) [null]

-B col | apse the backward Cl GAR operation
-? print long help, including note about region specification
-S ignored (input format is auto-detected)

--no-PG do not add a PG line
--input-fnt-option OPT[=VAL]
Specify a single input file format option in the form
of OPTION or OPTI ON=VALUE
-0 --output-fnt FORMAT[, OPT[=VAL]]...
Speci fy output format (SAM BAM CRAM
--output-fnt-option OPT[=VAL]
Specify a single output file format option in the form
of OPTION or OPTI ON=VALUE
-T, --reference FILE
Ref erence sequence FASTA FILE [nul |]
-@ --threads INT
Nurmber of additional threads to use [O]
--write-index
Automatically index the output files [off]
--verbosity I NT
Set |evel of verbosity

That is a lot to process! For now, we just want to read in a SAM file and output a BAM file. The input format is auto-detected, so we don't need to specify it
(although you do in v0.1.19). We just need to tell the tool to output the file in BAM format, and to include the header records.

Get the alignment exercises files

nkdir -p $SCRATCH core_ngs/al i gnment/yeast _bwa
cd $SCRATCH core_ngs/ al i gnnent/yeast _bwa
cp $CORENGS/ cat chup/ yeast _bwa/ yeast _pai redend. sam .

Convert SAM to binary BAM

cd $SCRATCH core_ngs/ al i gnnment/yeast _bwa
cat yeast_pairedend.sam| santools view -b -0 yeast_pairedend. bam

® the -b option tells the tool to output BAM format

® the -0 option specifies the name of the output BAM file that will be created

® we pipe the entire SAM file to samtools view so that the header records are included (required for SAM BAM conversion)
® samtools view reads its input from standard input by default

How do you look at the BAM file contents now? That's simple. Just use samtools view without the -b option. Remember to pipe output to a pager!

View BAM records

sant ool s vi ew yeast _pairedend. bam| nore

Notice that this does not show us the header record we saw at the start of the SAM file.
Exercise: What samtools view option will include the header records in its output? Which option would show only the header records?
samtools view -h shows header records along with alignment records.

samtools view -H shows header records only.

samtools sort

Looking at some of the alignment record information (e.g. samtools view yeast_pairedend.bam | cut -f 1-4 | more), you will notice that read names
appear in adjacent pairs (for the R1 and R2), in the same order they appeared in the original FASTQ file. Since that means the corresponding mappings
are in no particular order, searching through the file very inefficient. samtools sort re-orders entries in the SAM file either by locus (contig name + coordi
nate position) or by read name.

If you execute samtools sort without any options, you see its help page:

samtools sort usage

Usage: santools sort [options...] [in.bani

Opti ons:
-1 INT Set conpression level, fromO (unconpressed) to 9 (best)
-m | NT Set maxi mum nenory per thread; suffix K/ MG recogni zed [768M
-n Sort by read nane
-t TAG Sort by value of TAG Uses position as secondary index (or read nane if -n is set)

-0 FILE Wite final output to FILE rather than standard out put
-T PREFIX Wite tenporary files to PREFI X nnnn.bam
--no- PG do not add a PG |ine
--input-fnt-option OPT[=VAL]
Specify a single input file fornmat option in the form
of OPTION or OPTI ON=VALUE
-0 --output-fm FORVAT[, OPT[=VAL]]...
Speci fy output format (SAM BAM CRAM
--output-fnt-option OPT[=VAL]
Specify a single output file fornat option in the form
of OPTION or OPTI ON=VALUE
--reference FILE
Ref erence sequence FASTA FILE [null]
-@ --threads |INT
Nunber of additional threads to use [O0]
--verbosity INT
Set |evel of verbosity

In most cases you will be sorting a BAM file from name order to locus order. You can use either -o or redirection with > to control the output.

Copy aligned yeast BAM file

nkdir -p $SCRATCH core_ngs/ al i gnment/yeast _bwa
cd $SCRATCH core_ngs/ al i gnnent/yeast _bwa
cp $CORENGS/ cat chup/ yeast _bwa/ yeast _pai r edend. bam .

To sort the paired-end yeast BAM file by position, and get a BAM file named yeast_pairedend.sort.bam as output, execute the following command:

Sort a BAM file

cd $SCRATCH core_ngs/ al i gnment/yeast _bwa
santool s sort -O bam -T yeast_pai redend. t np yeast_pairedend. bam > yeast _pai redend. sort. bam

® The -O options says the Output format should be BAM
® The -T options gives a prefix for Temporary files produced during sorting
® sorting large BAMs will produce many temporary files during processing
® By default sort writes its output to standard output, so we use > to redirect to a file named yeast_pairedend.sort.bam

Exercise: Compare the file sizes of the yeast_pariedend .sam, .bam, and .sort.bam files and explain why they are different.

I's -1h yeast_pairedend*

The yeast_pairedend.sam text file is the largest at ~348 MB.

The name-ordered binary yeast_pairedend.bam text file only about 1/3 that size, ~110 MB. They contain exactly the same records, in the same
order, but conversion from text to binary results in a much smaller file.

The coordinate-ordered binary yeast_pairedend.sort.bam file is even slightly smaller, ~91 MB. This is because BAM files are actually customized gz

ip-format files. The customization allows blocks of data (e.g. all alignment records for a contig) to be represented in an even more compact form. You
can read more about this in section 4 of the SAM format specification.

samtools index

Many tools (like IGV, the Integrative Genomics Viewer) only need to use portions of a BAM file at a given point in time. For example, if you are viewing
alignments that are within a particular gene, alignment records on other chromosomes do not need to be loaded. In order to speed up access, BAM files
are indexed, producing BAI files which allow fast random access. This is especially important when you have many alignment records.

The utility samtools index creates an index that has the same name as the input BAM file, with suffix .bai appended. Here's the samtools index usage:

samtools index usage

Usage: santools index [-bc] [-mINT] <in.banm> [out.index]
Opti ons:
-b Generate BAl-fornat index for BAMfiles [defaul t]
-C CGenerate CSl-fornmat index for BAMfiles
-mINT Set mininuminterval size for CSI indices to 2"I NT [14]
-@INT Sets the nunber of threads [none]

The syntax here is way, way easier. We want a BAl-format index which is the default. (CSI-format is used with extremely long contigs, which don't apply
here - the most common use case is for polyploid plant genomes).

So all we have to provide is the sorted BAM:

Index a sorted bam

sant ool s i ndex yeast_pairedend. sort. bam

This will produce a file named yeast_pairedend.bam.bai.

Most of the time when an index is required, it will be automatically located as long as it is in the same directory as its BAM file and shares the same name
up until the .bai extension.

Exercise: Compare the sizes of the sorted BAM file and its BAl index.

https://samtools.github.io/hts-specs/SAMv1.pdf

I's -1 h yeast_pairedend. sort. ban¥

While the yeast_pairedend.sort.bam text file is ~91 MB, its index (yeast_pairedend.sort.bai) is only 20 KB.

samtools flagstat

Since the BAM file contains records for both mapped and unmapped reads, just counting records doesn't provide information about the mapping rate of
our alignment. The samtools flagstat tool provides a simple analysis of mapping rate based on the the SAM flag fields.

Here's how to run samtools flagstat and both see the output in the terminal and save it in a file — the samtools flagstat standard output is piped to tee,
which both writes it to the specified file and sends it to its standard output:

Run samtools flagstat using tee

santool s flagstat yeast_pairedend.sort.bam| tee yeast_pariedend. flagstat.txt

You should see something like this:

samtools flagstat output

1184360 + 0 in total (QC passed reads + QC-failed reads)
0 + 0 secondary

0 + O suppl enmentary

0 + O duplicates

547664 + 0 mapped (46.24%: NA)

1184360 + 0 paired in sequencing

592180 + 0 readl

592180 + 0 read2

473114 + 0 properly paired (39.95%: N A)

482360 + 0 with itself and nate mapped

65304 + 0 singletons (5.51%: N A)

534 + 0 with mate napped to a different chr

227 + 0 with mate napped to a different chr (mapQ@=5)

Ignore the "+ 0" addition to each line - that is a carry-over convention for counting QA-failed reads that is no longer relevant.

The most important statistic is the mapping rate (here 46%) but this readout also allows you to verify that some common expectations (e.g. that about the
same number of R1 and R2 reads aligned, and that most mapped reads are proper pairs) are met.

Exercise: What proportion of mapped reads were properly paired?

Divide the number of properly paired reads by the number of mapped reads:

awk 'BEG N{ print 473114 / 547664 }'
or
echo $((473114 * 100 / 547664))

About 86% of mapped read were properly paired. This is actually a bit on the low side for ChlP-seq alignments which typically over 90%.

samtools idxstats

More information about the alignment is provided by the samtools idxstats report, which shows how many reads aligned to each contig in your reference.
Note that samtools idxstats must be run on a sorted, indexed BAM file.

Use samtools idxstats to summarize mapped reads by contig

santool s idxstats yeast_pairedend. sort.bam | tee yeast_pairedend.idxstats.txt

samtools idxstats output

chrl 230218 8820 1640
chril 813184 36616 4026
chrill 316620 13973 1530

chriv 1531933 72675 8039
chrv 576874 27466 2806
chrvi 270161 10866 1222
chrvil 1090940 50893 5786
chrvill 562643 24672 3273
chri X 439888 16246 1739
chrX 745751 31748 3611
chr Xl 666816 28017 2776
chrXI'l 1078177 54783 10124
chr X'l 924431 40921 4556
chrXIV 784333 33070 3703
chrXv 1091291 48714 5150
chr XVl 948066 44916 5032
chrM 85779 3268 291

* 0 0 571392

The output has four tab-delimited columns:

. contig name

. contig length

. number of mapped reads

. number of unmapped reads

A WN P

The reason that the "unmapped reads" field for named chromosomes is not zero is that the aligner may initially assign a potential mapping (contig name
and start coordinate) to a read, but then mark it later as unampped if it does meet various quality thresholds.

@ If you're mapping to a non-genomic reference such as miRBase miRNAs or another set of genes (a transcriptome), samtools idxstats gives
you a quick look at quantitative alignment results.

	The Basic Alignment Workflow

