
The Basic Alignment Workflow

Overview
Stage the alignment data

Reference Genomes
Exploring FASTA with grep

Aligner overview
Exercise #1: BWA global alignment – Yeast ChIP-seq

Overview ChIP-seq alignment workflow with BWA
Introducing BWA
Building the BWA sacCer3 index
Performing the bwa alignment
Using cut to isolate fields

Exercise #2: Basic SAMtools Utilities
samtools view
samtools sort
samtools index
samtools flagstat
samtools idxstats

Overview

After raw sequence files are generated (in  format), quality-checked, and pre-processed in some way, the next step in many NGS pipelines is FASTQ
mapping to a reference genome.

For individual sequences it is common to use a tool like  to identify genes or species of origin. However a normal NGS dataset will have tens to BLAST
hundreds of millions of sequences, which and similar tools are not designed to handle. Thus a large set of computational tools have been  BLAST
developed to quickly align each read to its best location (if any) in a reference.

http://blast.ncbi.nlm.nih.gov/Blast.cgi


Even though   exist, a few individual programs have a dominant "market share" of the NGS world. many mapping tools In this section, we will primarily focus 
on two of the most versatile general-purpose ones: and  (the latter being part of the  suite which includes the transcriptome-aware  BWA Bowtie2 Tuxedo
RNA-seq aligner  as well as other downstream quantifiaction tools).Tophat2

Stage the alignment data

First connect to  and start an idev session. This should be second nature by now stampede2.tacc.utexas.edu

Start an idev session

idev -p normal -m 180 -A UT-2015-05-18 -N 1 -n 68 

Then stage the sample datasets and references we will use.

Get the alignment exercises files

mkdir -p $SCRATCH/core_ngs/references/fasta
mkdir -p $SCRATCH/core_ngs/alignment/fastq
cp $CORENGS/references/*.fa     $SCRATCH/core_ngs/references/fasta/
cp $CORENGS/alignment/*fastq.gz $SCRATCH/core_ngs/alignment/fastq/
cd $SCRATCH/core_ngs/alignment/fastq

These are descriptions of the  files we copied:FASTQ

File Name Description Sample

Sample_Yeast_L005_R1.cat.fastq.gz Paired-end Illumina, First of pair, FASTQ Yeast ChIP-seq

Sample_Yeast_L005_R2.cat.fastq.gz Paired-end Illumina, Second of pair, FASTQ Yeast ChIP-seq

human_rnaseq.fastq.gz Paired-end , First of pair only, FASTQIllumina Human RNA-seq

human_mirnaseq.fastq.gz Single-end Illumina, FASTQ Human microRNA-seq

cholera_rnaseq.fastq.gz Single-end Illumina, FASTQ V. cholerae RNA-seq

Reference Genomes

Before we get to alignment, we need a reference to align to. This is usually an organism's genome, but can also be , such any set of names sequences
as a transcriptome or other set of genes.

Here are the four reference genomes we will be using today, with some information about them. These are not necessarily the most recent versions of 
these references (e.g. the newest human reference genome is  and the most recent  annotation is  . (See  for information about hg38 miRBase v21 here
many more genomes.)

Reference Species Base Length Contig Number Source Download

hg19 Human 3.1 Gbp 25 (really 93) UCSC UCSC GoldenPath

sacCer3 Yeast 12.2 Mbp 17 UCSC UCSC GoldenPath

mirbase v20 Human subset 160 Kbp 1908 miRBase miRBase Downloads

vibCho (O395) Vibrio cholerae ~4 Mbp 2 GenBank GenBank Downloads

Searching genomes is computationally hard work and takes a long time if done on linear genomic sequence. So aligners require that references first be ind
to accelerate lookup. The aligners we are using each require a different index, but use the same method (the  ) to get the  exed Burrows-Wheeler Transform

job done.

Building a reference index involves taking a  file as input, with each (contiguous string of bases, e.g. a chromosome) as a separate FASTA  contig FASTA
entry, and producing an aligner-specific set of files as output. Those output index files are then used to perform the sequence alignment, and alignments 
are reported using coordinates referencing names and offset positions based on the original  file contig entries.FASTA

We can quickly index the references for the yeast genome, the human miRNAs, and the  genome, because they are all small, so we'll build V. cholerae
each index from the appropriate   files right before we use them. FASTA

hg19 is way too big for us to index here so we will use an existing set of  index files located at:hg19BWA 

http://en.wikipedia.org/wiki/Sequence_alignment_software
http://genomewiki.ucsc.edu/index.php/Hg19_Genome_size_statistics
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/
http://hgdownload.cse.ucsc.edu/goldenPath/sacCer3/bigZips/
http://www.mirbase.org/ftp.shtml
http://www.ncbi.nlm.nih.gov/nuccore/NC_012582
http://en.wikipedia.org/wiki/Burrows-Wheeler_transform


BWA hg19 index location

/work2/projects/BioITeam/ref_genome/bwa/bwtsw/hg19

Exploring FASTA with grep

It is often useful to know what chromosomes/contigs are in a   file before you start an alignment so that you're familiar with the contig naming FASTA
convention – and to verify that it's the one you expect.  For example, chromosome 1 is specified differently in different references and organisms:   (chr1 US

 human),   (  yeast), or just   (  human GRCh37).CS chrI UCSC 1 Ensembl

A   file consists of a number of contig name entries, each one starting with a right carat (   ) character, followed by many lines of base characters. E.FASTA >
g.:

>chrI
CCACACCACACCCACACACCCACACACCACACCACACACCACACCACACC
CACACACACACATCCTAACACTACCCTAACACAGCCCTAATCTAACCCTG
GCCAACCTGTCTCTCAACTTACCCTCCATTACCCTGCCTCCACTCGTTAC
CCTGTCCCATTCAACCATACCACTCCGAACCACCATCCATCCCTCTACTT

How do we dig out just the lines that have the contig names and ignore all the sequences? Well, the contig name lines all follow the pattern above, and 
since the   character is not a valid base, it will never appear on a sequence line.>

We've discovered a  (also known as a  ) to use in searching, and the command line tool that does regular expression matching  pattern regular expression
is   ( eneral  egular  xpression  arser). Read more about grep here:  .grep g r e p Advanced commands: grep

Regular expressions are so powerful that nearly every modern computer language includes a "regex" module of some sort. There are many online tutorials 
for regular expressions, and several slightly different "flavors" of them. But the most common is the  style ( ), which  Perl http://perldoc.perl.org/perlretut.html
was one of the fist and still the most powerful (there's a reason  was used extensively when assembling the human genome). We're only going to use  Perl
the most simple of regular expressions here, but learning more about them will pay handsome dividends for you in the future.

Here's how to execute   to list contig names in a  file.grep  FASTA

grep to match contig names in a FASTA file

cd $SCRATCH/core_ngs/references/fasta
grep -P '^>' sacCer3.fa | more

Notes:

The   option tells   to  -style regular expression patterns. -P grep Perl
This makes including special characters like Tab (   ), Carriage Return ( ) or Linefeed (  ) much easier that the default POSIX \t    \r  \n
paterns.
While it is not required here, it generally doesn't hurt to include this option.

'^>' is the regular expression describing the pattern we're looking for (described below)
sacCer3.fa is the file to search. 

lines with text that  our pattern will be written to  match standard output
non matching lines will be omitted

We pipe to  just in case there are a lot of contig names. more

Now down to the nuts and bolts of the pattern: '^>'

First, the   around the pattern – this tells the   shell to pass the   to  .single quotes bash exact string contents grep

The BioITeam maintains a set of reference indexes for many common organisms and aligners. They can be found in aligner-specific sub-
directories of the  area. E.g.:/work2/projects/BioITeam/ref_genome

/work2/projects/BioITeam/ref_genome/
   bowtie2/
   bwa/
   hisat2/
   kallisto/
   star/
   tophat/

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-GREP
http://perldoc.perl.org/perlretut.html


As part of its friendly command line parsing and evaluation, the shell will often look for special characters on the command line that mean something to it 
(for example, the   in front of an environment variable name, like in  ). Well, regular expressions treat the   specially too – but in a completely $ $SCRATCH $
different way! Those   tell the shell "don't look inside here for special characters – treat this as a literal string and pass it to the program". The single quotes
shell will obey, will strip the single quotes off the string, and will pass the actual pattern,  , to the   program. (Note that the shell  look inside ^> grep  does
double quotes (   ) for certain special signals, such as looking for environment variable names to evaluate. Read more about  .)" Quoting in the shell

So what does   mean to  ? We know that contig name lines always start with a   character, so   is a  for   to use in its pattern match.^> grep > >  literal grep

We might be able to get away with just using this literal alone as our regex, specifying   as the command line argument. But for  , the more specific '>' grep
the pattern, the better. So we  where the   can appear on the line. The special carat (   )   represents "beginning of line". So   m constrain > ^ metacharacter ^>
eans "beginning of a line followed by a   character".>

Exercise: How many contigs are there in the sacCer3 reference?

Get the alignment exercises files

mkdir -p $SCRATCH/core_ngs/references/fasta
cp $CORENGS/references/*.fa $SCRATCH/core_ngs/references/fasta/

cd $SCRATCH/core_ngs/references/fasta
grep -P '^>' sacCer3.fa | wc -l

Or use 's  option that says "just ount the line matches"grep -c c

grep -P -c '^>' sacCer3.fa

There are 17 contigs.

Aligner overview

There are many aligners available, but we will concentrate on two of the most popular general-purpose ones: and . The table below outlines bwa  bowtie2
the available protocols for them.

alignment 
type

aligner 
options

pro's con's

 global with bwa  SE:

bwa aln 
<R1>
bwa 
samse

PE:

bwa aln 
<R1>
bwa aln 
<R2>
bwa 
sampe

simple to use (take default options)
good for basic alignment global

multiple steps needed

 global with bowt
ie2

bowtie2 --
global extremely configurable

can be used for RNAseq alignment (after adapter trimming) because of its 
many options

complex (many options)

local with bwa  bwa mem
simple to use (take default options)
very fast
no adapter trimming needed
good for simple RNAseq analysis

the secondary alignments it reports provide splice junction 
information

 always produces alignments with 
secondary reads

must be filtered if not desired

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-shell_quoting


1.  

2.  

3.  
4.  
5.  
6.  
7.  
8.  
9.  

 local with bowti
e2

bowtie2 --local
extremely configurable
no adapter trimming needed
good for small RNA alignment because of its many options

complex – many options

Exercise #1: BWA global alignment – Yeast ChIP-seq

Overview ChIP-seq alignment workflow with BWA

We will perform a  of the paired-end Yeast ChIP-seq sequences using . This workflow has the following steps:global alignment bwa

Trim the  sequences down to 50 with FASTQ fastx_clipper
this removes most of any 5' adapter contamination without the fuss of specific adapter trimming w/cutadapt

Prepare the  reference index for  using  sacCer3 bwa bwa index
this is done once, and re-used for later alignments

Perform a global  alignment on the R1 reads ( ) producing a BWA-specific binary  intermediate filebwa bwa aln .sai
Perform a global  alignment on the R2 reads ( ) producing a BWA-specific binary  intermediate filebwa bwa aln .sai
Perform pairing of the separately aligned reads and report the alignments in SAM format using bwa sampe
Convert the SAM file to a BAM file ( )samtools view
Sort the BAM file by genomic location ( )samtools sort
Index the BAM file ( )samtools index
Gather simple alignment statistics (  and )samtools flagstat samtools idxstat

We're going to skip the trimming step for now and see how it goes. We'll perform steps 2 - 5 now and leave for a later exercise since steps 6 - samtools 
10 are common to nearly all post-alignment workflows.

Introducing BWA

Like other tools you've worked with so far, you first need to load . Do that now, and then enter with no arguments to view the top-level help page bwa  bwa
(many NGS tools will provide some help when called with no arguments). Note that is available both from the standard TACC module system and as  bwa B

. module.ioContainers

Start an idev session

idev -p normal -m 120 -A UT-2015-05-18 -N 1 -n 68 

module load biocontainers  # takes a while
module load bwa
bwa



BWA suite usage

Program: bwa (alignment via Burrows-Wheeler transformation)
Version: 0.7.17-r1188
Contact: Heng Li <lh3@sanger.ac.uk>

Usage:   bwa <command> [options]

Command: index         index sequences in the FASTA format
         mem           BWA-MEM algorithm
         fastmap       identify super-maximal exact matches
         pemerge       merge overlapping paired ends (EXPERIMENTAL)
         aln           gapped/ungapped alignment
         samse         generate alignment (single ended)
         sampe         generate alignment (paired ended)
         bwasw         BWA-SW for long queries

         shm           manage indices in shared memory
         fa2pac        convert FASTA to PAC format
         pac2bwt       generate BWT from PAC
         pac2bwtgen    alternative algorithm for generating BWT
         bwtupdate     update .bwt to the new format
         bwt2sa        generate SA from BWT and Occ

Note: To use BWA, you need to first index the genome with `bwa index'.
      There are three alignment algorithms in BWA: `mem', `bwasw', and
      `aln/samse/sampe'. If you are not sure which to use, try `bwa mem'
      first. Please `man ./bwa.1' for the manual.

As you can see, include many  that perform the tasks we are interested in. bwa sub-commands

Building the BWA sacCer3 index

We will index the genome with the  command. Type  with no arguments to see usage for this sub-command.bwa index bwa index

bwa index usage

Usage:   bwa index [options] <in.fasta>

Options: -a STR    BWT construction algorithm: bwtsw, is or rb2 [auto]
         -p STR    prefix of the index [same as fasta name]
         -b INT    block size for the bwtsw algorithm (effective with -a bwtsw) [10000000]
         -6        index files named as <in.fasta>.64.* instead of <in.fasta>.*

Warning: `-a bwtsw' does not work for short genomes, while `-a is' and
         `-a div' do not work not for long genomes.

Based on the usage description, we only need to specify two things:

The name of the  file  FASTA
Whether to use the   or  algorithm for indexingbwtsw is

Since  is relative large (~12 Mbp) we will specify   as the indexing option (as indicated by the "Warning" message), and the name of the sacCer3 bwtsw FAS
 file is .TA sacCer3.fa

The output of this command is a of files that are all required together as the index. So, within our directory, we will create another  group  references
directory called  and build the index there. To remind ourselves which  was used to build the index, we create a symbolic references/bwa/sacCer3 FASTA
link to our  file (note the use of the   syntax).references/fasta/sacCer3.fa ../.. relative path

Get the alignment exercises files

mkdir -p $SCRATCH/core_ngs/alignment/fastq
mkdir -p $SCRATCH/core_ngs/references/fasta
cp $CORENGS/alignment/*fastq.gz $SCRATCH/core_ngs/alignment/fastq/
cp $CORENGS/references/*.fa $SCRATCH/core_ngs/references/fasta/



Prepare BWA reference directory for sacCer3

mkdir -p $SCRATCH/core_ngs/references/bwa/sacCer3
cd $SCRATCH/core_ngs/references/bwa/sacCer3
ln -s ../../fasta/sacCer3.fa
ls -l

Now execute the  command.bwa index

Build BWA index for sacCer3

bwa index -a bwtsw sacCer3.fa

Since the yeast genome is not large when compared to human, this should not take long to execute (otherwise we would do it as a batch job). When it is 
complete you should see a set of index files like this:

BWA index files for sacCer3

sacCer3.fa
sacCer3.fa.amb
sacCer3.fa.ann
sacCer3.fa.bwt
sacCer3.fa.pac
sacCer3.fa.sa

Performing the bwa alignment

Now, we're ready to execute the actual alignment, with the goal of initially producing a file from the input files and reference. First prepare a  SAM FASTQ 
directory for this exercise and link the  reference directories there (this will make our commands more readable).sacCer3

# Copy the pre-built references
mkdir -p $SCRATCH/core_ngs/references
cp $CORENGS/references/*.fa $SCRATCH/core_ngs/references/fasta/

# Get the FASTQ to align
mkdir -p $SCRATCH/core_ngs/alignment/fastq
cp $CORENGS/alignment/*fastq.gz $SCRATCH/core_ngs/alignment/fastq/

Prepare to align yeast data

mkdir -p $SCRATCH/core_ngs/alignment/yeast_bwa
cd $SCRATCH/core_ngs/alignment/yeast_bwa
ln -s -f ../fastq
ln -s -f ../../references/bwa/sacCer3

As our workflow indicated, we first use on the R1 and R2 s, producing a BWA-specific  intermediate binary files.  bwa aln FASTQ .sai

What does  needs in the way of arguments?  bwa aln

bwa aln

There are lots of options, but here is a summary of the most important ones.

Option Effect

-l Specifies the length of the seed (default = 32)

-k Specifies the number of mismatches allowable in the seed of each alignment (default = 2)



-n Specifies the number of mismatches (or fraction of bases in a given alignment that can be mismatches) in the alignment (including  entire
the seed) (default = 0.04)

-t Specifies the number of threads

Other options control the details of how much a mismatch or gap is penalized, limits on the number of acceptable hits per read, and so on. Much more 
information can be found on the  .BWA manual page

For a basic alignment like this, we can just go with the default alignment parameters.

Note that writes its (binary) output to   by default, so we need to  that to a  file. bwa standard output redirect .sai

For simplicity, we will just execute these commands directly, one at a time. Each command should only take few minutes and you will see 's progress bwa
messages in your terminal.

bwa aln commands for yeast R1 and R2

# If not already loaded:
module load biocontainers
module load bwa

cd $SCRATCH/core_ngs/alignment/yeast_bwa
bwa aln sacCer3/sacCer3.fa fastq/Sample_Yeast_L005_R1.cat.fastq.gz > yeast_R1.sai
bwa aln sacCer3/sacCer3.fa fastq/Sample_Yeast_L005_R2.cat.fastq.gz > yeast_R2.sai

When all is done you should have two  files:  and ..sai yeast_R1.sai yeast_R2.sai

Exercise: How long did it take to align the R2 file?

The last few lines of bwa's execution output should look something like this:

[bwa_aln] 17bp reads: max_diff = 2
[bwa_aln] 38bp reads: max_diff = 3
[bwa_aln] 64bp reads: max_diff = 4
[bwa_aln] 93bp reads: max_diff = 5
[bwa_aln] 124bp reads: max_diff = 6
[bwa_aln] 157bp reads: max_diff = 7
[bwa_aln] 190bp reads: max_diff = 8
[bwa_aln] 225bp reads: max_diff = 9
[bwa_aln_core] calculate SA coordinate... 50.76 sec
[bwa_aln_core] write to the disk... 0.07 sec
[bwa_aln_core] 262144 sequences have been processed.
[bwa_aln_core] calculate SA coordinate... 50.35 sec
[bwa_aln_core] write to the disk... 0.07 sec
[bwa_aln_core] 524288 sequences have been processed.
[bwa_aln_core] calculate SA coordinate... 13.64 sec
[bwa_aln_core] write to the disk... 0.01 sec
[bwa_aln_core] 592180 sequences have been processed.
[main] Version: 0.7.17-r1188
[main] CMD: /usr/local/bin/bwa aln sacCer3/sacCer3.fa fastq/Sample_Yeast_L005_R1.cat.fastq.gz
[main] Real time: 122.936 sec; CPU: 123.597 sec

So the R2 alignment took ~123 seconds (~2 minutes).

Since you have your own private compute node, you can use all its resources. It has 68 cores, so re-run the R2 alignment asking for 60 execution threads.

bwa aln -t 60 sacCer3/sacCer3.fa fastq/Sample_Yeast_L005_R2.cat.fastq.gz > yeast_R2.sai

Exercise: How much of a speedup did you seen when aligning the R2 file with 20 threads?

The last few lines of 's execution output should look something like this:bwa

Make sure your output files are not empty

Double check that output was written by doing  and making sure the file sizes listed are not 0.ls -lh

http://bio-bwa.sourceforge.net/bwa.shtml


[bwa_aln] 17bp reads: max_diff = 2
[bwa_aln] 38bp reads: max_diff = 3
[bwa_aln] 64bp reads: max_diff = 4
[bwa_aln] 93bp reads: max_diff = 5
[bwa_aln] 124bp reads: max_diff = 6
[bwa_aln] 157bp reads: max_diff = 7
[bwa_aln] 190bp reads: max_diff = 8
[bwa_aln] 225bp reads: max_diff = 9
[bwa_aln_core] calculate SA coordinate... 266.70 sec
[bwa_aln_core] write to the disk... 0.04 sec
[bwa_aln_core] 262144 sequences have been processed.
[bwa_aln_core] calculate SA coordinate... 268.94 sec
[bwa_aln_core] write to the disk... 0.03 sec
[bwa_aln_core] 524288 sequences have been processed.
[bwa_aln_core] calculate SA coordinate... 72.26 sec
[bwa_aln_core] write to the disk... 0.01 sec
[bwa_aln_core] 592180 sequences have been processed.
[main] Version: 0.7.17-r1188
[main] CMD: /usr/local/bin/bwa aln -t 60 sacCer3/sacCer3.fa fastq/Sample_Yeast_L005_R2.cat.fastq.gz
[main] Real time: 19.872 sec; CPU: 617.095 sec

So the R2 alignment took only ~20 seconds (real time), or 6+ times as fast as with only one processing thread.

Note, though, that the CPU time with 60 threads was greater (617 sec) than with only 1 thread (124 sec). That's because of the thread management 
overhead when using multiple threads.

Next we use the  command to pair the reads and output  format data. Just type that command in with no arguments to see its usage.bwa sampe SAM

For this command you provide the same reference index prefix as for , along with the two  files and the two original  files. Also, writbwa aln .sai FASTQ bwa 
es its output to  , so redirect that to a  file.standard output .sam

Here is the command line statement you need. Just execute it on the command line.

Pairing of BWA R1 and R2 aligned reads

bwa sampe sacCer3/sacCer3.fa yeast_R1.sai yeast_R2.sai \
  fastq/Sample_Yeast_L005_R1.cat.fastq.gz \
  fastq/Sample_Yeast_L005_R2.cat.fastq.gz > yeast_pairedend.sam

You should now have a  file ( ) that contains the alignments. It's just a text file, so take a look with , , , , or SAM yeast_pairedend.sam head more less tail
whatever you feel like. Later you'll learn additional ways to analyze the data with  once you create a  file.samtools BAM

Exercise: What kind of information is in the first lines of the SAM file?

The  file has a number of header lines, which all start with an at sign (   ).SAM @

The  lines describe each contig (chromosome) and its length.@SQ

There is also a  line that describes the way the  was performed.@PG  bwa sampe

Exercise: How many alignment records (not header records) are in the SAM file?

This looks for the pattern   which is the start of every read name (which starts every alignment record).'^HWI'
Remember  says just count the records, don't display them.-c

grep -P -c '^HWI' yeast_pairedend.sam

Or use the  (in ert) option to tell to print all lines that  match a particular pattern; here, all header lines, which start with .-v v  grep don't @

grep -P -v -c '^@' yeast_pairedend.sam

There are 1,184,360 alignment records.

Exercise: How many sequences were in the R1 and R2 FASTQ files combined?

zcat fastq/Sample_Yeast_L005_R[12].cat.fastq.gz | wc -l | awk '{print $1/4}'



There were a total of 1,184,360 original sequences (R1s + R2s)

Exercises:

Do both R1 and R2 reads have separate alignment records?
Does the SAM file contain both mapped and un-mapped reads?
What is the order of the alignment records in this SAM file?

Both R1 and R2 reads must have separate alignment records, because there were 1,184,360 R1+R2 reads and the same number of alignment 
records.

The SAM file must contain both mapped and un-mapped reads, because there were 1,184,360 R1+R2 reads and the same number of alignment 
records.

Alignment records occur in the same read-name order as they did in the , except that they come in pairs. The R1 read comes 1st, then the FASTQ
corresponding R2. This is called .read name ordering

Using cut to isolate fields

Recall the format of a  alignment record:SAM

Suppose you wanted to look only at field 3 (contig name) values in the SAM file. You can do this with the handy command. Below is a simple example  cut
where you're asking to display the 3rd column value for the last 10 alignment records. cut

Cut syntax for a single field

tail yeast_pairedend.sam | cut -f 3

By default assumes the field delimiter is , which is the delimiter used in the majority of NGS file formats. You can specify a different delimiter with  cut Tab
the  option.-d

You can also specify a range of fields, and mix adjacent and non-adjacent fields. This displays fields 2 through 6, field 9:

Cut syntax for multiple fields

tail -20 yeast_pairedend.sam | cut -f 2-6,9

You may have noticed that some alignment records contain contig names (e.g. ) in field 3 while others contain an asterisk (  ). The   means the chrV * *
record didn't map. We're going to use this heuristic along with cut to see about how many records represent aligned sequences. (Note this is not the strictly 
correct method of finding unmapped reads because not all unmapped reads have an asterisk in field 3. Later you'll see how to properly distinguish 
between mapped and unmapped reads using .)samtools

First we need to make sure that we don't look at fields in the  header lines. We're going to end up with a series of pipe operations, and the best way to SAM
make sure you're on track is to enter them one at a time piping to :head



Grep pattern that doesn't match header

# the ^@ pattern matches lines starting with @ (only header lines), 
# and -v says output lines that don't match
grep -v -P '^@' yeast_pairedend.sam | head

Ok, it looks like we're seeing only alignment records. Now let's pull out only field 3 using :cut

Get contig name info with cut

grep -v -P '^@' yeast_pairedend.sam | cut -f 3 | head

Cool, we're only seeing the contig name info now. Next we use again, piping it our contig info and using the  (in ert) switch to say print lines that  grep -v v do
 match the pattern:n't

Filter contig name of * (unaligned)

grep -v -P '^@' yeast_pairedend.sam | cut -f 3 | grep -v '*' | head

Perfect! We're only seeing real contig names that (usually) represent aligned reads. Let's count them by piping to  (and omitting omit  of course – wc -l head
we want to count everything).

Count aligned SAM records

grep -v -P '^@' yeast_pairedend.sam | cut -f 3 | grep -v '*' | wc -l

Exercise: About how many records represent aligned sequences? What alignment rate does this represent?

The expression above returns 612,968. There were 1,184,360 records total, so the percentage is:

Calculate alignment rate

awk 'BEGIN{print 612968/1184360}'

or about 51%. Not great.

Note we perform this calculation in 's block, which is always executed, instead of the body block, which is only executed for lines of input. awk  BEGIN
And here we call  without piping it any input. See awk Linux fundamentals: cut,sort,uniq,grep,awk

Exercise: What might we try in order to improve the alignment rate?

Recall that these are 100 bp reads and we did not remove adapter contamination. There will be a distribution of fragment sizes – some will be short – 
and those short fragments may not align without adapter removal (e.g. with ).fastx_trimmer

Exercise #2: Basic SAMtools Utilities

The   program is a commonly used set of tools that allow a user to manipulate /  files in many different ways, ranging from simple tasks SAMtools SAM BAM
(like  format conversion) to more complex functions (like sorting, indexing and statistics gathering).  It is available in the TACC module system SAM/BAM
(as well as in ). Load that module and see what has to offer:BioContainers  samtools

Start an idev session

idev -p normal -m 120 -A UT-2015-05-18 -N 1 -n 68 

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-cut,sort,uniq,grep,awk
http://samtools.sourceforge.net/


# If not already loaded
module load biocontainers  # takes a while

module load samtools
samtools

SAMtools suite usage

Program: samtools (Tools for alignments in the SAM format)
Version: 1.10 (using htslib 1.10)

Usage:   samtools <command> [options]

Commands:
  -- Indexing
     dict           create a sequence dictionary file
     faidx          index/extract FASTA
     fqidx          index/extract FASTQ
     index          index alignment

  -- Editing
     calmd          recalculate MD/NM tags and '=' bases
     fixmate        fix mate information
     reheader       replace BAM header
     targetcut      cut fosmid regions (for fosmid pool only)
     addreplacerg   adds or replaces RG tags
     markdup        mark duplicates

  -- File operations
     collate        shuffle and group alignments by name
     cat            concatenate BAMs
     merge          merge sorted alignments
     mpileup        multi-way pileup
     sort           sort alignment file
     split          splits a file by read group
     quickcheck     quickly check if SAM/BAM/CRAM file appears intact
     fastq          converts a BAM to a FASTQ
     fasta          converts a BAM to a FASTA

  -- Statistics
     bedcov         read depth per BED region
     coverage       alignment depth and percent coverage
     depth          compute the depth
     flagstat       simple stats
     idxstats       BAM index stats
     phase          phase heterozygotes
     stats          generate stats (former bamcheck)

  -- Viewing
     flags          explain BAM flags
     tview          text alignment viewer
     view           SAM<->BAM<->CRAM conversion
     depad          convert padded BAM to unpadded BAM

In this exercise, we will explore five utilities provided by : , . Each of these is executed in one line for a samtools , view , sort index ,  flagstat and idxstats
given  file. In the / sections tomorrow we will explore  in more in depth.SAM/BAM SAMtools  BEDtools samtools



samtools view

The  utility provides a way of converting between (text) and  (binary, compressed) format. It also provides many, many other samtools view  SAM  BAM
functions which we will discuss lster. To get a preview, execute  without any other arguments. You should see:samtools view

Know your samtools version!

There are two main "eras" of development: SAMtools

"original" samtools
v  is the last stable version0.1.19

"modern" samtools
v 1.0, 1.1, 1.2 – avoid these (very buggy!)
v + – finally stable!1.3

Unfortunately,  in both version eras have ! So be sure you know which some functions with the same name different options and arguments
version you're using. (The  version is usually reported at the top of its usage listing).samtools

TACC  also offers the original version: .BioContainers  samtools samtools/ctr-0.1.19--3



samtools view usage

Usage: samtools view [options] <in.bam>|<in.sam>|<in.cram> [region ...]

Options:
  -b       output BAM
  -C       output CRAM (requires -T)
  -1       use fast BAM compression (implies -b)
  -u       uncompressed BAM output (implies -b)
  -h       include header in SAM output
  -H       print SAM header only (no alignments)
  -c       print only the count of matching records
  -o FILE  output file name [stdout]
  -U FILE  output reads not selected by filters to FILE [null]
  -t FILE  FILE listing reference names and lengths (see long help) [null]
  -X       include customized index file
  -L FILE  only include reads overlapping this BED FILE [null]
  -r STR   only include reads in read group STR [null]
  -R FILE  only include reads with read group listed in FILE [null]
  -d STR:STR
           only include reads with tag STR and associated value STR [null]
  -D STR:FILE
           only include reads with tag STR and associated values listed in
           FILE [null]
  -q INT   only include reads with mapping quality >= INT [0]
  -l STR   only include reads in library STR [null]
  -m INT   only include reads with number of CIGAR operations consuming
           query sequence >= INT [0]
  -f INT   only include reads with all  of the FLAGs in INT present [0]
  -F INT   only include reads with none of the FLAGS in INT present [0]
  -G INT   only EXCLUDE reads with all  of the FLAGs in INT present [0]
  -s FLOAT subsample reads (given INT.FRAC option value, 0.FRAC is the
           fraction of templates/read pairs to keep; INT part sets seed)
  -M       use the multi-region iterator (increases the speed, removes
           duplicates and outputs the reads as they are ordered in the file)
  -x STR   read tag to strip (repeatable) [null]
  -B       collapse the backward CIGAR operation
  -?       print long help, including note about region specification
  -S       ignored (input format is auto-detected)
  --no-PG  do not add a PG line
      --input-fmt-option OPT[=VAL]
               Specify a single input file format option in the form
               of OPTION or OPTION=VALUE
  -O, --output-fmt FORMAT[,OPT[=VAL]]...
               Specify output format (SAM, BAM, CRAM)
      --output-fmt-option OPT[=VAL]
               Specify a single output file format option in the form
               of OPTION or OPTION=VALUE
  -T, --reference FILE
               Reference sequence FASTA FILE [null]
  -@, --threads INT
               Number of additional threads to use [0]
      --write-index
               Automatically index the output files [off]
      --verbosity INT
               Set level of verbosity

That is a lot to process! For now, we just want to read in a  file and output a  file. The input format is auto-detected, so we don't need to specify it SAM BAM
(although you do in v0.1.19). We just need to tell the tool to output the file in  format, and to include the header records.BAM

Get the alignment exercises files

mkdir -p $SCRATCH/core_ngs/alignment/yeast_bwa
cd $SCRATCH/core_ngs/alignment/yeast_bwa
cp $CORENGS/catchup/yeast_bwa/yeast_pairedend.sam .



Convert SAM to binary BAM

cd $SCRATCH/core_ngs/alignment/yeast_bwa
cat yeast_pairedend.sam | samtools view -b -o yeast_pairedend.bam 

the  option tells the tool to output  format-b BAM
the  option specifies the name of the utput  file that will be created-o o BAM
we pipe the entire  file to   so that the header records are included (required for SAM  BAM conversion)SAM samtools view

samtools view reads its input from  by defaultstandard input

How do you look at the  file contents now? That's simple. Just use  without the  option. Remember to pipe output to a pager!BAM samtools view -b

View BAM records

samtools view yeast_pairedend.bam | more

Notice that this does not show us the header record we saw at the start of the  file.SAM

Exercise: What samtools view option will include the header records in its output? Which option would show only the header records?

samtools view -h shows header records  alignment records.along with

samtools view -H shows .header records only

samtools sort

Looking at some of the alignment record information (e.g. ), you will notice that read names samtools view yeast_pairedend.bam | cut -f 1-4 | more
appear in adjacent pairs (for the R1 and R2), in the same order they appeared in the original  file. Since that means the corresponding mappings FASTQ
are in no particular order, searching through the file very inefficient.  re-orders entries in the  file either by (  + samtools sort SAM  locus contig name coordi

) or by . nate position read name

If you execute  without any options, you see its help page:samtools sort

samtools sort usage

Usage: samtools sort [options...] [in.bam]
Options:
  -l INT     Set compression level, from 0 (uncompressed) to 9 (best)
  -m INT     Set maximum memory per thread; suffix K/M/G recognized [768M]
  -n         Sort by read name
  -t TAG     Sort by value of TAG. Uses position as secondary index (or read name if -n is set)
  -o FILE    Write final output to FILE rather than standard output
  -T PREFIX  Write temporary files to PREFIX.nnnn.bam
  --no-PG    do not add a PG line
      --input-fmt-option OPT[=VAL]
               Specify a single input file format option in the form
               of OPTION or OPTION=VALUE
  -O, --output-fmt FORMAT[,OPT[=VAL]]...
               Specify output format (SAM, BAM, CRAM)
      --output-fmt-option OPT[=VAL]
               Specify a single output file format option in the form
               of OPTION or OPTION=VALUE
      --reference FILE
               Reference sequence FASTA FILE [null]
  -@, --threads INT
               Number of additional threads to use [0]
      --verbosity INT
               Set level of verbosity

In most cases you will be sorting a  file from  to . You can use either  or redirection with  to control the output.BAM name order locus order -o >

Copy aligned yeast BAM file



mkdir -p $SCRATCH/core_ngs/alignment/yeast_bwa
cd $SCRATCH/core_ngs/alignment/yeast_bwa
cp $CORENGS/catchup/yeast_bwa/yeast_pairedend.bam .

To sort the paired-end yeast  file by position, and get a  file named as output, execute the following command:BAM BAM yeast_pairedend.sort.bam 

Sort a BAM file

cd $SCRATCH/core_ngs/alignment/yeast_bwa
samtools sort -O bam -T yeast_pairedend.tmp yeast_pairedend.bam > yeast_pairedend.sort.bam

The  options says the utput format should be -O O BAM
The options gives a prefix for emporary files produced during sorting-T T

sorting large s will produce temporary files during processingBAM  many
By default writes its output to , so we use  to redirect to a file named  sort standard output > yeast_pairedend.sort.bam

Exercise: Compare the file sizes of the yeast_pariedend .sam, .bam, and .sort.bam files and explain why they are different.

ls -lh yeast_pairedend*

The  text file is the largest at ~348 MB.yeast_pairedend.sam

The name-ordered binary  text file only about 1/3 that size, ~110 MB. They contain the same records, in the same yeast_pairedend.bam  exactly
order, but conversion from text to binary results in a much smaller file.

The coordinate-ordered binary  file is even slightly smaller, ~91 MB. This is because  files are actually  yeast_pairedend.sort.bam BAM customized gz
-format files. The customization allows blocks of data (e.g. all alignment records for a contig) to be represented in an even more compact form. You ip

can read more about this in section 4 of .the SAM format specification

samtools index

Many tools (like , the ntegrative enomics iewer) only need to use portions of a  file at a given point in time. For example, if you are viewing IGV I G V BAM
alignments that are within a particular gene, alignment records on other chromosomes do not need to be loaded. In order to speed up access,  files BAM
are , producing  files which allow fast random access. This is especially important when you have many alignment records.indexed BAI

The utility  creates an index that has the same name as the input  file, with suffix  appended. Here's the  usage:samtools index BAM .bai samtools index

samtools index usage

Usage: samtools index [-bc] [-m INT] <in.bam> [out.index]
Options:
  -b       Generate BAI-format index for BAM files [default]
  -c       Generate CSI-format index for BAM files
  -m INT   Set minimum interval size for CSI indices to 2^INT [14]
  -@ INT   Sets the number of threads [none]

The syntax here is way, way easier. We want a -format index which is the default. (CSI-format is used with extremely long contigs, which don't apply BAI
here - the most common use case is for polyploid plant genomes).

So all we have to provide is the BAM: sorted

Index a sorted bam

samtools index yeast_pairedend.sort.bam

This will produce a file named  .yeast_pairedend.bam.bai

Most of the time when an index is required, it will be automatically located as long as it is in the  as its  file and shares the same name same directory BAM
up until the   extension..bai

Exercise: Compare the sizes of the sorted BAM file and its BAI index.

https://samtools.github.io/hts-specs/SAMv1.pdf


ls -lh yeast_pairedend.sort.bam*

While the  text file is ~91 B, its index ( ) is only 20 B.yeast_pairedend.sort.bam M yeast_pairedend.sort.bai K

samtools flagstat

Since the  file contains records for both mapped and unmapped reads, just counting records doesn't provide information about the  of BAM mapping rate
our alignment. The  tool provides a simple analysis of mapping rate based on the the  flag fields.samtools flagstat SAM

Here's how to run  and both see the output in the terminal and save it in a file – the    is piped to , samtools flagstat samtools flagstat standard output tee
which both writes it to the specified file and sends it to its :standard output

Run samtools flagstat using tee

samtools flagstat yeast_pairedend.sort.bam | tee yeast_pariedend.flagstat.txt

You should see something like this:

samtools flagstat output

1184360 + 0 in total (QC-passed reads + QC-failed reads)
0 + 0 secondary
0 + 0 supplementary
0 + 0 duplicates
547664 + 0 mapped (46.24% : N/A)
1184360 + 0 paired in sequencing
592180 + 0 read1
592180 + 0 read2
473114 + 0 properly paired (39.95% : N/A)
482360 + 0 with itself and mate mapped
65304 + 0 singletons (5.51% : N/A)
534 + 0 with mate mapped to a different chr
227 + 0 with mate mapped to a different chr (mapQ>=5)

Ignore the " " addition to each line - that is a carry-over convention for counting QA-failed reads that is no longer relevant.+ 0

The most important statistic is the mapping rate (here 46%) but this readout also allows you to verify that some common expectations (e.g. that about the 
same number of R1 and R2 reads aligned, and that most mapped reads are proper pairs) are met.

Exercise: What proportion of mapped reads were properly paired?

Divide the number of properly paired reads by the number of mapped reads:

awk 'BEGIN{ print 473114 / 547664 }'
# or
echo $(( 473114 * 100 / 547664 ))

About 86% of mapped read were properly paired. This is actually a bit on the low side for ChIP-seq alignments which typically over 90%.

samtools idxstats

More information about the alignment is provided by the  report, which shows how many reads aligned to each contig in your reference. samtools idxstats
Note that  must be run on a  file.samtools idxstats sorted, indexed BAM

Use samtools idxstats to summarize mapped reads by contig

samtools idxstats yeast_pairedend.sort.bam | tee yeast_pairedend.idxstats.txt



1.  
2.  
3.  
4.  

samtools idxstats output

chrI    230218  8820    1640
chrII   813184  36616   4026
chrIII  316620  13973   1530
chrIV   1531933 72675   8039
chrV    576874  27466   2806
chrVI   270161  10866   1222
chrVII  1090940 50893   5786
chrVIII 562643  24672   3273
chrIX   439888  16246   1739
chrX    745751  31748   3611
chrXI   666816  28017   2776
chrXII  1078177 54783   10124
chrXIII 924431  40921   4556
chrXIV  784333  33070   3703
chrXV   1091291 48714   5150
chrXVI  948066  44916   5032
chrM    85779   3268    291
*       0       0       571392

The output has four tab-delimited columns:

contig name
contig length
number of mapped reads
number of unmapped reads

The reason that the "unmapped reads" field for named chromosomes is not zero is that the aligner may initially assign a potential mapping (contig name 
and start coordinate) to a read, but then mark it later as unampped if it does meet various quality thresholds.

If you're mapping to a non-genomic reference such as miRBase miRNAs or another set of genes (a transcriptome),  gives samtools idxstats
you a quick look at quantitative alignment results.


	The Basic Alignment Workflow

