Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: SciML course

...

Students not supported on sponsored research projects or a University fellowship may elect any of the four options. Most Master's students, especially those holding University fellowships or research assistantships, are encouraged to complete Option 1. Students with research assistantships generally write a thesis that also serves as a report to the research sponsor. Options 2 and 3 are appropriate for students interested in a broader education and thus take more courses in related minor focus areas. M.S. Master's students are supervised by one member of the Geotechnical engineering faculty, with at least one other professor serving as the thesis or report reader.

...

The Ph.D. program has no formal course requirements. We generally expect students to complete a minimum of 16 graduate courses, including courses taken elsewhere and courses taken for the M.S. Master's degree. The appropriate courses to complete are selected in consultation with the student's advisor and supervising committee, and should include some coursework in a supporting area outside of Geotechnical engineering. Successful candidates must demonstrate proficiency in written English and pass three examinations:

...

  • CE 387C - Geoenvironmental Engineering
    This course covers geotechnical aspects for the containment and remediation of waste. Topics include fluid flow through porous media, including saturated, unsaturated, multiphase and gas flow; contaminant transport across soil barriers; clay mineralogy and chemical interactions with soil liners; field performance of compacted soil liners and composite liners; drainage layer design and performance; water balance evaluations for covers; and interface shear resistance for geosynthetics and soils. The course contains a laboratory. Laboratory experiments include hydraulic conductivity, surface tension, capillarity, chemical interactions with soils and geosynthetics, transmissivity and permittivity of geosynthetics; vapor diffusion through geomembranes, and interface shear resistance between geosynthetics.

  • CE 387L.1 - Strength and Shear Properties of Soil
    This course provides a thorough discussion of shearing properties of soils, including use of effective versus total stresses, effects of drainage, use of modified failure envelopes, failure and yield criteria, properties of both saturated and unsaturated soils, sensitivity, and thixotropy, and critical state soil mechanics. Lectures cover the interpretation of laboratory measurements, while the lab allows students to perform direct shear and triaxial shear tests.

  • CE 387L.2 - Foundation Engineering
    This course explores the technical principles and practical issues related to the design, construction, and performance of foundations for structures. Both shallow foundations, which include footings, mats, and rafts, and deep foundations, which include driven piles and drilled shafts, are considered. The emphasis is on the fundamental principles and concepts that will provide the basis and framework for sound engineering judgment in foundation design.
  • CE 387M.1 - Stability of Earth Slopes
    This course covers the principles of slope stability and the application of these principles to the analysis and design of earth slopes. Different types of analysis, from stability charts to different limit equilibrium solutions, are presented. We consider the analysis of natural slopes, cut slopes, and embankment fills (including dams) under different loading conditions.

  • CE 387M.2 - Seepage and Earth Dams
    Principles of water flow in soils, hydraulic conductivity, and graphical and numerical techniques for solving seepage problems are covered in the first part of this course. The second part focuses on earth dams and applications of many of the principles covered in the first part of the course. Coverage of earth dams includes preparation and treatment of foundations, selection and design of embankment cross-sections, slope protection and field measurements. The class performs numerical (finite element) analyses to compute both seepage and stress/deformation patterns for a typical earth dam.

  • CE 387R.1 - Consolidation and Settlement
    The course begins with a review of classical methods of settlement analysis for wide embankments and of the Terzaghi method of analysis for time rates. These methods are then extended to cover a variety of more realistic conditions including time dependent loading, dewatering, and radial flow involving use of wicks. The behavior of structures is discussed in terms of limit states. Stress distribution theories are discussed and various methods of analysis of behavior of shallow footings, including mats, are discussed. Study of case histories and extensive laboratory observations are used to gain insight into the real performance of soils, and numerical methods of analysis are developed to analyze realistic problems. A laboratory involves the performance of consolidation tests.

  • CE 387R.2 - Soil and Rock Dynamics
    This course deals with the response of soil, rock, and soil-structure systems under low-amplitude dynamic loading such as that generated by machinery, vehicular traffic, and conventional blasting. Field and laboratory methods used to evaluate dynamic soil properties are discussed. Measurements of dynamic material properties are performed in the field using seismic techniques, and in the laboratory using resonant and transient techniques. Analytical methods used to design surface, embedded, and pile-supported foundations undergoing transient or steady-state vibration are studied. Problems associated with vibration transmission and isolation in soil and rock are also discussed.

  • CE 387R.4 - Earth Retaining Structures
    Analysis and design are covered for such earth retention systems as retaining walls, free-standing sheet-pile walls, braced excavations, slurry walls, tied-back retention systems, reinforced earth, frozen soil walls, anchored bulkheads, and cellular cofferdams. The problems involved with the interaction of the structures with the soil are studied. Both classical and more refined methods of analyses are included and considerable attention is directed toward field observations. Soft-ground tunneling may also be included.

  • CE 387R.5 - Geotechnical Earthquake Engineering
    This course is concerned with the application of soil dynamics to earthquake engineering and the study of the geotechnical aspects of earthquakes. Earthquake mechanisms, earthquake ground motions, and the influence of soil conditions on ground motion characteristics are discussed. The evaluation of site response using wave propagation techniques is presented. Soil liquefaction, lateral spreading, the seismic response of earth structures, and seismic-deformation procedures for slopes are considered. Case studies from previous earthquakes and group projects that deal with data from previous earthquakes are used to give students a better understanding of the geotechnical phenomena associated with earthquakes.

  • CE 387G - Engineering Geology
    This course presents the fundamentals of geology in a way that is relevant to Civil Engineers. The course focuses on geologic materials, earth processes, and landforms, all of which evolve through the vast amounts of geologic time to produce the global conditions that we see today. The three-way interactions among materials, landforms, and processes provide challenges to Civil Engineers in their work siting, designing, and maintaining structures and facilities.
    Although the overall scope of the course is be global, a major emphasis will focus on the Austin area and nearby localities. Most laboratory sessions will be conducted in the field.

  • CE 394M - Adv Analysis of Geotechnical Engineering
    The primary focus of this course is the application of the finite element method to problems in geotechnical engineering. The finite element method is introduced and various constitutive laws for modeling soil behavior are presented. Specifically, linear elastic, nonlinear elastic (hyperbolic), linear elastic-perfectly plastic, and nonlinear elasto-plastic (Cam clay) models are discussed. The critical state framework for modeling soil response is studied. Students use computer programs to perform static analyses of earth structures and develop recommendations regarding realistic consulting projects. Other analytical procedures, such as the finite difference method and discontinuous deformation analysis, are also discussed.

  • CE 397.7 - Decision, Risk and Reliability
    This course focuses on modeling uncertainty in geotechnical design and decision-making. Topics include spatial variability in soil properties uncertainty in performance models, decision and risk analysis, and reliability evaluation for components and systems.
  • CE 397 - Scientific Machine Learning
    This course introduces engineers to scientific machine learning (SciML), a rapidly emerging field that combines the best of machine learning and traditional scientific computation to tackle complex scientific problems. Students will learn to apply machine learning techniques in engineering applications, including numerical simulations, data-driven modeling, and uncertainty quantification. This course covers foundational concepts, techniques, and algorithms, as well as practical implementation in PyTorch and Jax.

Related Courses

Graduate students in geotechnical engineering can choose from an extensive array of classes at The University of Texas at Austin to fulfill the requirements for coursework in supporting areas. A partial list of suitable courses is given here. Students are encouraged to investigate the University's undergraduate and graduate course catalogs for other classes to broaden their graduate education.

...