Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Code Block
languagebash
titleGet the alignment exercises files
# Copy the FASTA files for building references
mkdir -p $SCRATCH/core_ngs/references/fasta
cp $CORENGS/references/fasta/*.fa     $SCRATCH/core_ngs/references/fasta/

# Copy the FASTQ files that will be used for alignment
mkdir -p $SCRATCH/core_ngs/alignment/fastq
cp $CORENGS/alignment/*fastq.gz $SCRATCH/core_ngs/alignment/fastq/
cd $SCRATCH/core_ngs/alignment/fastq

...

Code Block
languagebash
titlegrep to match contig names in a FASTA file
# If you haven't staged the fasta files
cds
mkdir -p core_ngs/references/fasta
cd core_ngs/references/fasta
cp $CORENGS/references/fasta/*.fa .

cd $SCRATCH/core_ngs/references/fasta
grep -P '^>' sacCer3.fa | more

...

We might be able to get away with just using this literal alone as our regex, specifying '>' as the command line argument. But for grep, the more specific the pattern, the better. So we constrain where the > can appear on the line. The special carat ( ^ )  metacharacter represents "beginning of line". So ^> means "beginning of a line followed by a > character".

Exercise: How many contigs are there in the sacCer3 reference?

Expand
titleSetup (if needed)


Code Block
languagebash
titleGet the alignment exercises files
# Copy the FASTA files for building references
mkdir -p $SCRATCH/core_ngs/references/fasta
cp $CORENGS/references/fasta/*.fa $SCRATCH/core_ngs/references/fasta/


Exercise: How many contigs are there in the sacCer3 reference?

Expand
titleHint


Code Block
languagebash
cd $SCRATCH/core_ngs/references/fasta
grep -P '^>' sacCer3.fa | wc -l

Or use grep's -c option that says "just count the line matches"

Code Block
languagebash
grep -P -c '^>' sacCer3.fa


...

Expand
titleSetup (if needed)


Code Block
languagebash
titleGet the alignment exercises files
mkdir -p $SCRATCH/core_ngs/alignment/fastq
mkdir -p $SCRATCH/core_ngs/references/fasta
cp $CORENGS/alignment/*fastq.gz   $SCRATCH/core_ngs/alignment/fastq/
cp $CORENGS/references/fasta/*.fa $SCRATCH/core_ngs/references/fasta/


...

Expand
titleSetup (if needed)


Code Block
languagebash
# Copy the pre-builtFASTA files for building references
mkdir -p $SCRATCH/core_ngs/references
cp $CORENGS/references/fasta/*.fa $SCRATCH/core_ngs/references/fasta/

# GetCopy thea FASTQ pre-built bwa index for sacCer3
mkdir -p $SCRATCH/core_ngs/references/bwa/sacCer3
cp $CORENGS/references/bwa/sacCer3/*.* $SCRATCH/core_ngs/references/bwa/sacCer3/

# Get the FASTQ to align
mkdir -p $SCRATCH/core_ngs/alignment/fastq
cp $CORENGS/alignment/*fastq.gz $SCRATCH/core_ngs/alignment/fastq/


...

Code Block
languagebash
titlebwa aln commands for yeast R1 and R2
# If not already loaded:
module load biocontainers
module load bwa

cd $SCRATCH/core_ngs/alignment/yeast_bwa
bwa aln sacCer3/sacCer3.fa fastq/Sample_Yeast_L005_R1.cat.fastq.gz > yeast_pe_R1.sai
bwa aln sacCer3/sacCer3.fa fastq/Sample_Yeast_L005_R2.cat.fastq.gz > yeast_pe_R2.sai

When all is done you should have two .sai files: yeast_pe_R1.sai and yeast_pe_R2.sai.

Tip
titleMake sure your output files are not empty

Double check that output was written by doing ls -lh and making sure the file sizes listed are not 0.

...

Code Block
bwa aln -t 60 sacCer3/sacCer3.fa fastq/Sample_Yeast_L005_R2.cat.fastq.gz > yeast_pe_R2.sai

Exercise: How much of a speedup did you seen when aligning the R2 file with 20 60 threads?

Expand
titleAnswer

The last few lines of bwa's execution output should look something like this:

Code Block
languagebash
[bwa_aln] 17bp reads: max_diff = 2
[bwa_aln] 38bp reads: max_diff = 3
[bwa_aln] 64bp reads: max_diff = 4
[bwa_aln] 93bp reads: max_diff = 5
[bwa_aln] 124bp reads: max_diff = 6
[bwa_aln] 157bp reads: max_diff = 7
[bwa_aln] 190bp reads: max_diff = 8
[bwa_aln] 225bp reads: max_diff = 9
[bwa_aln_core] calculate SA coordinate... 266.70 sec
[bwa_aln_core] write to the disk... 0.04 sec
[bwa_aln_core] 262144 sequences have been processed.
[bwa_aln_core] calculate SA coordinate... 268.94 sec
[bwa_aln_core] write to the disk... 0.03 sec
[bwa_aln_core] 524288 sequences have been processed.
[bwa_aln_core] calculate SA coordinate... 72.26 sec
[bwa_aln_core] write to the disk... 0.01 sec
[bwa_aln_core] 592180 sequences have been processed.
[main] Version: 0.7.17-r1188
[main] CMD: /usr/local/bin/bwa aln -t 60 sacCer3/sacCer3.fa fastq/Sample_Yeast_L005_R2.cat.fastq.gz
[main] Real time: 5.013 sec; CPU: 142.813 sec

So the R2 alignment took only ~5 seconds (real time), or 15+ times as fast as with only one processing thread.

Note, though, that the CPU time with 60 threads was greater (142.8 sec) than with only 1 thread (77.6 sec). That's because of the thread management overhead when using multiple threads.

...

Here is the command line statement you need. Just execute it on the command line.

Expand
titleSetup (if needed)


Code Block
languagebash
titlePairing of BWA R1 and R2 aligned reads
# Copy the FASTA files for building references
mkdir -p $SCRATCH/core_ngs/references
cp $CORENGS/references/fasta/*.fa $SCRATCH/core_ngs/references/fasta/

# Copy a pre-built bwa index for sacCer3
mkdir -p $SCRATCH/core_ngs/references/bwa/sacCer3
cp $CORENGS/references/bwa/sacCer3/*.* $SCRATCH/core_ngs/references/bwa/sacCer3/

# Get the FASTQ to align
mkdir -p $SCRATCH/core_ngs/alignment/fastq
cp $CORENGS/alignment/*fastq.gz $SCRATCH/core_ngs/alignment/fastq/

# Stage the BWA .sai files
mkdir -p $SCRATCH/core_ngs/alignment/yeast_bwa
cd $SCRATCH/core_ngs/alignment/yeast_bwa
ln -sf ../fastq
ln -sf ../../references/bwa/sacCer3
cp $CORENGS/catchup/yeast_bwa/*.sai .



Code Block
languagebash
titlePairing of BWA R1 and R2 aligned reads
cd $SCRATCH/core_ngs/alignment/yeast_bwa
bwa sampe sacCer3/sacCer3.fa yeast_pe_R1.sai yeast_pe_R2.sai \
  fastq/bwa sampe sacCer3/sacCer3.fa yeast_R1.sai yeast_R2.sai \
  fastq/Sample_Yeast_L005_R1.cat.fastq.gz \
  fastq/Sample_Yeast_L005_R2.cat.fastq.gz > yeast_pairedendpe.sam

You should now have a SAM file (yeast_pairedendpe.sam) that contains the alignments. It's just a text file, so take a look with head, more, less, tail, or whatever you feel like. Later you'll learn additional ways to analyze the data with samtools once you create a BAM file.

...

Expand
titleHint

This looks for the pattern  '^HWI' which is the start of every read name (which starts every alignment record).
Remember -c says just count the records, don't display them.

Code Block
languagebash
grep -P -c '^HWI' yeast_pairedendpe.sam

Or use the -v (invert) option to tell grep to print all lines that don't match a particular pattern; here, all header lines, which start with @.

Code Block
languagebash
grep -P -v -c '^@' yeast_pairedendpe.sam



Expand
titleAnswer
There are 1,184,360 alignment records.

...

Expand
titleAnswers

Both R1 and R2 reads must have separate alignment records, because there were 1,184,360 R1+R2 reads and the same number of alignment records.

The SAM file must contain both mapped and un-mapped unmapped reads, because there were 1,184,360 R1+R2 reads and the and the same number of alignment records.

Alignment records occur in the same read-name order as they did in the FASTQ, except that they come in pairs. The R1 read comes 1st, then the corresponding R2. This is called read name ordering.

...

Suppose you wanted to look only at field 3 (contig name) values in the SAM file. You can do this with the handy cut command. Below is a simple example where you're asking cut to display the 3rd column value for the last 10 alignment records.

Expand
titleSetup (if needed)


Code Block
languagebash
# Stage the aligned SAM file
mkdir -p $SCRATCH/core_ngs/alignment/yeast_bwa
cd $SCRATCH/core_ngs/alignment/yeast_bwa
cp $CORENGS/catchup/yeast_bwa/yeast_pe.sam .



Code Block
languagebash
titleCut syntax for a single field
tail yeast_pairedendpe.sam | cut -f 3

By default cut assumes the field delimiter is Tab, which is the delimiter used in the majority of NGS file formats. You can specify a different delimiter with the -d option.

...

Code Block
languagebash
titleCut syntax for multiple fields
tail -20 yeast_pairedendpe.sam | cut -f 2-6,9

You may have noticed that some alignment records contain contig names (e.g. chrV) in field 3 while others contain an asterisk ( * ). The * means the record didn't map. We're going to use this heuristic along with cut to see about how many records represent aligned sequences. (Note this is not the strictly correct method of finding unmapped reads because not all unmapped reads have an asterisk in field 3. Later you'll see how to properly distinguish between mapped and unmapped reads using samtools.)

...

Code Block
languagebash
titleGrep pattern that doesn't match header
# the ^@ pattern matches lines starting with @ (only header lines), 
# and -v says output lines that don't match
grep -v -P '^@' yeast_pairedendpe.sam | head

Ok, it looks like we're seeing only alignment records. Now let's pull out only field 3 using cut:

...

Code Block
languagebash
titleFilter contig name of * (unaligned)
grep -v -P '^@' yeast_pairedendpe.sam | cut -f 3 | grep -v '*' | head

...

Code Block
languagebash
titleCount aligned SAM records
grep -v -P '^@' yeast_pairedendpe.sam | cut -f 3 | grep -v '*' | wc -l

...

Expand
titleSetup (if needed)


Code Block
languagebash
titleGet the alignment exercises files
mkdir -p $SCRATCH/core_ngs/alignment/yeast_bwa
cd $SCRATCH/core_ngs/alignment/yeast_bwa
cp $CORENGS/catchup/yeast_bwa/yeast_pairedendpe.sam .



Code Block
languagebash
titleConvert SAM to binary BAM
cd $SCRATCH/core_ngs/alignment/yeast_bwa
catsamtools view -b yeast_pairedendpe.sam | samtools view -b -o > yeast_pairedendpe.bam 
  • the -b option tells the tool to output BAM formatthe -o option specifies the name of the output BAM file that will be created
  • we pipe the entire SAM file to samtools view so that the header records are included (required for SAM → BAM conversion)
    • samtools view reads its input from standard input by default

How do you look at the BAM file contents now? That's simple. Just use samtools view without the -b option. Remember to pipe output to a pager!

Code Block
languagebash
titleView BAM records
samtools view yeast_pairedendpe.bam | more

Notice that this does not show us the header record we saw at the start of the SAM file.

...

Expand
titleSetup (if needed)


Copy aligned yeast BAM file

Code Block
languagebash
# Stage the aligned yeast SAM and BAM files
mkdir -p $SCRATCH/core_ngs/alignment/yeast_bwa
cd $SCRATCH/core_ngs/alignment/yeast_bwa
cp $CORENGS/catchup/yeast_bwa/yeast_pairedend.bampe.[bs]am .


To sort the paired-end yeast BAM file by position, and get a BAM file named yeast_pairedendpe.sort.bam as output, execute the following command:

Code Block
languagebash
titleSort a BAM file
cd $SCRATCH/core_ngs/alignment/yeast_bwa
samtools sort -O bam -T yeast_pairedendpe.tmp yeast_pairedendpe.bam > yeast_pairedendpe.sort.bam
  • The -O options says the Output format should be BAM
  • The -T options gives a prefix for Temporary files produced during sorting
    • sorting large BAMs will produce many temporary files during processing many temporary files during processing
    • make sure the temporary file prefix is different from the input BAM file prefix!
  • By default sort writes its output to standard output, so we use > to redirect to a file named yeast_pairedend.sort.bam

Exercise: Compare the file sizes of the yeast_pariedend pe .sam, .bam, and .sort.bam files and explain why they are different.

Expand
titleHint


Code Block
languagebash
ls -lh yeast_pairedendpe*



Expand
titleAnswer

The yeast_pairedendpe.sam text file is the largest at ~348 MB.

The name-ordered binary yeast_pairedendpe.bam text file only about 1/3 that size, ~111 MB. They contain exactly the same records, in the same order, but conversion from text to binary results in a much smaller file.

The coordinate-ordered binary yeast_pairedendpe.sort.bam file is even slightly smaller, ~92 MB. This is because BAM files are actually customized gzip-format files. The customization allows blocks of data (e.g. all alignment records for a contig) to be represented in an even more compact form. You can read more about this in section 4 of the SAM format specification.

...

Code Block
languagebash
titleIndex a sorted bam
samtools index yeast_pairedendpe.sort.bam

This will produce a file named yeast_pairedendpe.bam.bai.

Most of the time when an index is required, it will be automatically located as long as it is in the same directory as its BAM file and shares the same name up until the .bai extension.

...

Expand
titleHint


Code Block
languagebash
ls -lh yeast_pairedendpe.sort.bam*



Expand
titleAnswer

While the yeast_pairedendpe.sort.bam file is ~92 MB, its index (yeast_pairedendpe.sort.bai) is only 20 KB.

samtools flagstat

...

Here's how to run samtools flagstat and both see the output in the terminal and save it in a file – the samtools flagstat standard output is piped to tee, which both writes it to the specified file and sends it to its standard output:to the specified file and sends it to its standard output:

Expand
titleSetup (if needed)


Code Block
languagebash
# Stage the aligned yeast SAM and BAM files
mkdir -p $SCRATCH/core_ngs/alignment/yeast_bwa
cd $SCRATCH/core_ngs/alignment/yeast_bwa
cp $CORENGS/catchup/yeast_bwa/yeast_pe.sort.bam* .



Code Block
languagebash
titleRun samtools flagstat using tee
samtools flagstat yeast_pairedendpe.sort.bam | tee yeast_pariedendpe.flagstat.txt

You should see something like this:

...

More information about the alignment is provided by the samtools idxstats report, which shows how many reads aligned to each contig in your reference. Note that samtools idxstats must be run on a sorted, indexed BAM file.

Expand
titleSetup (if needed)


Code Block
languagebash
# Stage the aligned yeast SAM and BAM files
mkdir -p $SCRATCH/core_ngs/alignment/yeast_bwa
cd $SCRATCH/core_ngs/alignment/yeast_bwa
cp $CORENGS/catchup/yeast_bwa/yeast_pe.sort.bam* .



Code Block
languagebash
titleUse samtools idxstats to summarize mapped reads by contig
samtools idxstats yeast_pairedendpe.sort.bam | tee yeast_pairedendpe.idxstats.txt

Here we use the tee command which reports its standard input to standard output before also writing it to the specified file.

...