
Bedtools: Analyzing your aligned experiment

Use bedtools coverage to create a signal track
A brief introduction to bedtools
bedtools bamtofastq: converting a BAM file to a fastq file
bedtools bamtobed: converting a BAM file into a bed file
bedtools coverage: how much of the genome does my data cover?
bedtools merge: collapsing bookended elements (or elements within a certain distance)
bedtools intersect: identifying where two experiments overlap (or don't overlap)
bedtools closest: when you want to know how far your regions are from a test set
bedtools subtract: removing features from your bed file
A little bit of filtering, using awk

Use bedtools coverage to create a signal track

A is a () file with an entry for every base in a defined set of regions (see signal track bedGraph BED3+ https://genome.ucsc.edu/goldenpath/help
). files can be visualized in the Broad's (ntegrative enomics iewer) application (/bedgraph.html bedGraph IGV I G V https://software.broadinstitute.org

) or in the ()./software/igv/download UCSC Genome Browser https://genome.ucsc.edu/

The function (), with the (per-base epth) option produces bedtools coverage https://bedtools.readthedocs.io/en/latest/content/tools/coverage.html -d d
output that can be made into a . Here we'll analyze the per-base coverage of yeast RNAseq reads in our merged yeast gene regions.bedGraph

Make sure you're in an session, then prepare a directory for this exercise.idev

Prepare for bedtools coverage

idev -m 120 -N 1 -A OTH21164 -r CoreNGSday5
module load biocontainers
module load bedtools

mkdir -p $SCRATCH/core_ngs/bedtools_coverage
cp $CORENGS/catchup/bedtools_merge/merged*bed $SCRATCH/core_ngs/bedtools_coverage/
cp $CORENGS/yeast_rnaseq/yeast_mrna.sort.filt.bam* $SCRATCH/core_ngs/bedtools_coverage/

Then calling is easy. The " " file will be our gene regions, and the " " file will be the yeast RNAseq reads. We also use the (per-bedtools coverage A B -d
base epth) and (force "strandedness") options.d -s

cds; cd core_ngs/bedtools_coverage
bedtools coverage -s -d -a merged.good.sc_genes.bed -b yeast_mrna.sort.filt.bam > yeast_mrna.gene_coverage.txt

wc -l yeast_mrna.gene_coverage.txt # 8,829,317 lines!

It will complain a bit because our genes file includes the yeast plasmid " " but the RNAseq BAM doesn't include that contig. We'll ignore that 2-micron
warning.

The bedtools coverage output is a bit strange. It lists each region in the A file, followed by information from the B reads. Here the column order will be gene
._chrom gene_start gene_end gene_name gene_score gene_strand offset_in_the_gene_region read_overlap count

Let's look at coverage for gene YAL067C:

cat yeast_mrna.gene_coverage.txt | grep -P 'YAL067C' | head -50

Will look like this:

https://genome.ucsc.edu/goldenpath/help/bedgraph.html
https://genome.ucsc.edu/goldenpath/help/bedgraph.html
https://software.broadinstitute.org/software/igv/download
https://software.broadinstitute.org/software/igv/download
https://genome.ucsc.edu/
https://bedtools.readthedocs.io/en/latest/content/tools/coverage.html

chrI 7234 9016 YAL067C 1 - 1 0
chrI 7234 9016 YAL067C 1 - 2 0
chrI 7234 9016 YAL067C 1 - 3 0
chrI 7234 9016 YAL067C 1 - 4 0
chrI 7234 9016 YAL067C 1 - 5 0
chrI 7234 9016 YAL067C 1 - 6 0
chrI 7234 9016 YAL067C 1 - 7 0
chrI 7234 9016 YAL067C 1 - 8 0
chrI 7234 9016 YAL067C 1 - 9 0
chrI 7234 9016 YAL067C 1 - 10 0
chrI 7234 9016 YAL067C 1 - 11 0
chrI 7234 9016 YAL067C 1 - 12 0
chrI 7234 9016 YAL067C 1 - 13 0
chrI 7234 9016 YAL067C 1 - 14 0
chrI 7234 9016 YAL067C 1 - 15 0
chrI 7234 9016 YAL067C 1 - 16 0
chrI 7234 9016 YAL067C 1 - 17 1
chrI 7234 9016 YAL067C 1 - 18 1
chrI 7234 9016 YAL067C 1 - 19 1
chrI 7234 9016 YAL067C 1 - 20 1
chrI 7234 9016 YAL067C 1 - 21 1
chrI 7234 9016 YAL067C 1 - 22 1
chrI 7234 9016 YAL067C 1 - 23 1
chrI 7234 9016 YAL067C 1 - 24 1
chrI 7234 9016 YAL067C 1 - 25 1
chrI 7234 9016 YAL067C 1 - 26 1
chrI 7234 9016 YAL067C 1 - 27 1
chrI 7234 9016 YAL067C 1 - 28 1
chrI 7234 9016 YAL067C 1 - 29 1
chrI 7234 9016 YAL067C 1 - 30 1
chrI 7234 9016 YAL067C 1 - 31 1
chrI 7234 9016 YAL067C 1 - 32 1
chrI 7234 9016 YAL067C 1 - 33 1
chrI 7234 9016 YAL067C 1 - 34 1
chrI 7234 9016 YAL067C 1 - 35 1
chrI 7234 9016 YAL067C 1 - 36 1
chrI 7234 9016 YAL067C 1 - 37 1
chrI 7234 9016 YAL067C 1 - 38 2
chrI 7234 9016 YAL067C 1 - 39 2
chrI 7234 9016 YAL067C 1 - 40 2
chrI 7234 9016 YAL067C 1 - 41 3
chrI 7234 9016 YAL067C 1 - 42 3
chrI 7234 9016 YAL067C 1 - 43 3
chrI 7234 9016 YAL067C 1 - 44 3
chrI 7234 9016 YAL067C 1 - 45 4
chrI 7234 9016 YAL067C 1 - 46 4
chrI 7234 9016 YAL067C 1 - 47 4
chrI 7234 9016 YAL067C 1 - 48 4
chrI 7234 9016 YAL067C 1 - 49 4
chrI 7234 9016 YAL067C 1 - 50 4

A proper file has only 4 columns: and does not need to include positions with 0 reads, so we'll convert the bedGraph chrom start end value bedtools
 output to using . We re-sort the output so that plus and minus strand positions are adjacent.coverage bedGraph awk

cat yeast_mrna.gene_coverage.txt | awk '
BEGIN{FS=OFS="\t"}
{if ($8>0) {print $1,$2-1+$7,$2+$7,$8}}' | \
 sort -k1,1 -k2,2n -k3,3n > yeast_mrna.gene_coverage.almost.bedGraph

wc -l yeast_mrna.gene_coverage.almost.bedGraph # 5,710,186 -- better, but still big

While we probably could consider this file to have format, it's preferable to combine adjacent per-base coordinates with the same count into bedGraph
larger regions, e.g.

per-base counts
chrI 7271 7272 2
chrI 7272 7273 2
chrI 7273 7274 2
chrI 7274 7275 3
chrI 7275 7276 3
chrI 7276 7277 3
chrI 7277 7278 3

corresponding region counts
chrI 7271 7274 6
chrI 7274 7278 12

Here's some to do this:awk

cat yeast_mrna.gene_coverage.almost.bedGraph | awk '
BEGIN{FS=OFS="\t"; chr=""; start=-1; end=-1; count=0}
{if (chr != $1) { # new contig; finish previous
 if (count > 0) { print chr,start,end,count }
 chr=$1; start=$2; end=$3; count=$4
 } else if (($2==end || $2==end+1) && ($4==count)) { # same or adjacent position with same count
 end=$3;
 } else { # new region on same contig; finish prev
 if (count > 0) { print chr,start,end,count}
 start=$2; end=$3; count=$4
 }
}
END{ # finish last
 if (count > 0) { print chr,start,end,count }
}' > yeast_mrna.gene_coverage.bedGraph

wc -l yeast_mrna.gene_coverage.bedGraph # 1,048,510 -- much better!

Make sure the total counts match!

cat yeast_mrna.gene_coverage.txt | awk '
 BEGIN{tot=0}{tot=tot+$8}END{print tot}' # should be 86703686
cat yeast_mrna.gene_coverage.almost.bed | awk '
 BEGIN{tot=0}{tot=tot+$4}END{print tot}' # should also be 86703686
cat yeast_mrna.gene_coverage.bedGraph | awk '
 BEGIN{tot=0}{tot=tot+$4*($3-$2)}END{print tot}' # should also be 86703686

Now our file is a proper , whose first lines look like this:yeast_mrna.gene_coverage.bedGraph bedGraph

chrI 7250 7271 1
chrI 7271 7274 2
chrI 7274 7278 3
chrI 7278 7310 4
chrI 7310 7317 3
chrI 7317 7349 2
chrI 7349 7353 1
chrI 7500 7556 1
chrI 8851 8891 1
chrI 11919 11951 1

x

A brief introduction to bedtools

Now that we have a BAM file with only the reads we want included, we can do some more sophisticated analysis using . changes bedtools Bedtools
from version to version, and here we are using version 2.22, the newest version, and what is currently installed on . You can check what stampede
versions of are installed by using the following command on : bedtools stampede

http://bedtools.readthedocs.org/en/latest/index.html

module spider bedtools

First, log on to the node on and make a directory in called in your scratch folder. Then copy your filtered BAM file login8 stampede scratch bedtools
from the section into this folder.samtools

ssh user@login8.stampede.tacc.utexas.edu #if you are not already logged in!
cd $SCRATCH/core_ngs
mkdir bedtools
cd samtools
cp yeast_pairedend_sort.mapped.q1.bam ../bedtools
cd ../bedtools

If you were unable to make the filtered and sorted BAM file from the previous section, you can copy it over from my scratch directory:

cd bedtools
cp /scratch/01786/awh394/core_ngs/bedtools/yeast_pairedend_sort.mapped.q1.bam .

bedtools : converting a BAM file to a fastq filebamtofastq

Sometimes, especially when working with external data, we need to go from a BAM file back to a fastq file. This can be useful for re-aligning reads using a
different aligner, different settings on the original aligner used. It can also be useful for extracting the sequence of interesting regions of the genome after
you have manipulated your BAM file.

For this exercise, you'll be using . This function takes an aligned BAM file as input and outputs a fastq format file. You can use the options if bamtofastq
you have paired end data to output R1 and R2 reads for your fastq file. This type of function is especially useful if you need to to analyze sequences after
you've compared several BAM or bed files.

bedtools bamtofastq -i input.bam -fq output.fastq

Exercise 1: convert BAM to fastq and look at the quality scores

solution code

module load bedtools
bedtools bamtofastq -i yeast_pairedend_sort.mapped.q1.bam -fq yeast_pairedend_sort.mapped.q1.fastq #takes 1-2
minutes
more yeast_pairedend_sort.mapped.q1.fastq

Here is an example of two sequences (and their corresponding quality scores):

two lines of a fastq file

@HWI-ST1097:127:C0W5VACXX:5:2212:10568:79659
TACCCTCCAATTACCCATATCCAACCCACTGCCACTTACCCTACCATTACCCTACCATCCACCATGACCTACTCACCATACTGTTCTTCTACCCACCATAT
+
CCCFFFFFHHHHHJJJJJIIJJJJIJJIJJIJJIIIIJJJIJJIJJIJJIJJJJJJJJJJIIGGIGEGAEHFEFFEFFFDEEE@CCEDCDDD>ACBBDCA@
@HWI-ST1097:127:C0W5VACXX:5:2115:19940:13862
TAGGGTAAGTTTGAGATGGTATATACCCTACCATCCACCATGACCTACTCACCATACTGTTCTTCTACCCACCATATTGAAACGCTAACAAATGATCGTAA
+
?B@DF2ADHFHHFHJIIIGCIHIGGIJJJJGHIIIGIJEHHIGGGAHEGGFGHIECGIJIIIJIIIIIJJJJJJE>EHDHEEEBCDD?CDDBDDDDDDCDB

As we discussed earlier, the top line is the identifier for the sequence produced, the second line defines which bases were produced, the third line
indicates the strand the sequence is aligned to, and the fourth line indicates the quality scores for each character in the second line.ASCII based

bedtools bamtobed: converting a BAM file into a bed file

While it's useful to be able to look at the fastq file, many analyses will be easiest to perform in . Bed format is a simple tab delimited format that bed format
designates various properties about segments of the genome, defined by the chromosome, start coordinates and end coordinates. provides a Bedtools
simple utility to convert BAM files over into bed files, termed .bamtobed

http://bedtools.readthedocs.org/en/latest/content/tools/bamtofastq.html
http://ascii.cl/
https://genome.ucsc.edu/FAQ/FAQformat.html#format1
http://bedtools.readthedocs.org/en/latest/content/tools/bamtobed.html

1.
2.
3.
4.

bedtools bamtobed -i input.bam > output.bed #output to a file
bedtools bamtobed -i input.bam | more #output to more

Note that the output will be piped to standard out unless you redirect to a program (head, more, less) or a file (output.bed). Now we'll put this example to
use and convert our filtered BAM file from the samtools section into a bed file.

Exercise 2: Convert the filtered yeast paired end BAM to bed using bamtobed, look at your file in more, and find the number of lines in the file

Hint: direct the output to a file first, then use more to look at the converted file visually use ctrl+c to quit more.;

solution code

module load bedtools #if you haven't loaded it in for this session
bedtools bamtobed -i yeast_pairedend_sort.mapped.q1.bam > yeast_pairedend_sort.mapped.q1.bed

more yeast_pairedend_sort.mapped.q1.bed #to examine the bed file visually
wc -l yeast_pairedend_sort.mapped.q1.bed #to get the number of lines in a file

Here is what my output looks like:

output from the code above

wc -l yeast_pairedend_sort.mapped.q1.bed
528976 yeast_pairedend_sort.mapped.q1.bed
more yeast_pairedend_sort.mapped.q1.bed
chrI 219 320 HWI-ST1097:127:C0W5VACXX:5:2212:10568:79659/1 37 +
chrI 266 344 HWI-ST1097:127:C0W5VACXX:5:2115:19940:13862/2 29 +
chrI 368 469 HWI-ST1097:127:C0W5VACXX:5:2115:19940:13862/1 29 -
chrI 684 785 HWI-ST1097:127:C0W5VACXX:5:2212:10568:79659/2 37 -
chrI 871 955 HWI-ST1097:127:C0W5VACXX:5:1103:4918:43976/2 29 +
chrI 871 948 HWI-ST1097:127:C0W5VACXX:5:1104:2027:42518/2 29 +
chrI 871 948 HWI-ST1097:127:C0W5VACXX:5:1109:3153:38695/2 29 +
chrI 871 948 HWI-ST1097:127:C0W5VACXX:5:2109:6222:11815/2 29 +
chrI 871 948 HWI-ST1097:127:C0W5VACXX:5:2113:5002:59471/2 29 +
chrI 871 948 HWI-ST1097:127:C0W5VACXX:5:2113:7803:87146/2 29 +
chrI 971 1072 HWI-ST1097:127:C0W5VACXX:5:1103:4918:43976/1 29 -
chrI 978 1079 HWI-ST1097:127:C0W5VACXX:5:1104:2027:42518/1 29 -
chrI 978 1079 HWI-ST1097:127:C0W5VACXX:5:1109:3153:38695/1 29 -
chrI 978 1079 HWI-ST1097:127:C0W5VACXX:5:2109:6222:11815/1 29 -
chrI 978 1079 HWI-ST1097:127:C0W5VACXX:5:2113:5002:59471/1 29 -
chrI 978 1079 HWI-ST1097:127:C0W5VACXX:5:2113:7803:87146/1 29 -
chrI 978 1079 HWI-ST1097:127:C0W5VACXX:5:2203:1231:50183/1 37 -

Note the "stacks" of reads that are occurring on similar coordinates on the same strand of the genome. We'll deal with those in the bedtools merge
section.

 , .See also: bedtools bedtobam if you need to get back to a bam file from a bed file (some programs take bam files as input). Documentation here

bedtools : how much of the genome does my data cover?coverage

One way of characterizing data is to understand what percentage of the genome your data covers. What type of experiment you performed should affect
the coverage of your data. A ChIP-seq experiment will cover binding sites, and a RNA-seq experiment will cover expressed transcripts. coverageBedtools
allows you to compare one bed file to another and compute the breadth and depth of coverage.

bedtools coverage -a experiment.bed -b reference_file.bed

The resulting output will contain several additional columns which summarize this information:

After each interval in B, will report:coverageBed

The number of features in A that overlapped (by at least one base pair) the B interval.
The number of bases in B that had non-zero coverage from features in A.
The length of the entry in B.
The fraction of bases in B that had non-zero coverage from features in A.

http://bedtools.readthedocs.io/en/latest/content/tools/bedtobam.html
http://bedtools.readthedocs.org/en/latest/content/tools/coverage.html
http://bedtools.readthedocs.org/en/latest/content/tools/coverage.html

For this exercise, we'll use a bed file that summarizes the S. cerevisiae genome, version 3 (aka sacCer3). For this class, I've made a bed file out of the
genome, using the file . First go and copy the file over from my scratch directory:sacCer3.chrom.sizes

cd bedtools #if you aren't already there
cp /scratch/01786/awh394/core_ngs.test/bedtools/sacCer3.chrom.sizes.bed .

more sacCer3.chrom.sizes.bed
chrIV 1 1531933
chrXV 1 1091291
chrVII 1 1090940
chrXII 1 1078177
chrXVI 1 948066
chrXIII 1 924431
chrII 1 813184
chrXIV 1 784333
chrX 1 745751
chrXI 1 666816
chrV 1 576874
chrVIII 1 562643
chrIX 1 439888
chrIII 1 316620
chrVI 1 270161
chrI 1 230218
chrM 1 85779

The format is bed3 - just chrom, start (which is always 1) and stop, which is always the length of the chromosome, for this type of bed file.

Now use to find the coverage of the file output.bed over the sacCer3 genome and examine the output coverage.bedtools coverage

Exercise 3: Find the coverage of your bed file over the sacCer3 genome

solution code

module load bedtools #again, if not already loaded
bedtools coverage -a sacCer3.chrom.sizes.bed -b yeast_pairedend_sort.mapped.q1.bed > sacCer3coverage.bed
more sacCer3coverage.bed #this file should have 17 lines, one for each chromosome

And here is what my output looks like:

more sacCer3coverage.bed
chrIV 1 1531933 70633 1026387 1531932 0.6699951
chrXV 1 1091291 47871 710376 1091290 0.6509507
chrVII 1 1090940 49762 722821 1090939 0.6625677
chrXII 1 1078177 48155 658373 1078176 0.6106359
chrXVI 1 948066 43531 612122 948065 0.6456540
chrXIII 1 924431 40054 618798 924430 0.6693833
chrII 1 813184 35818 539222 813183 0.6631004
chrXIV 1 784333 32565 513382 784332 0.6545468
chrX 1 745751 30743 472357 745750 0.6333986
chrXI 1 666816 27950 446567 666815 0.6697015
chrV 1 576874 26918 381078 576873 0.6605926
chrVIII 1 562643 23424 356421 562642 0.6334774
chrIX 1 439888 15953 276571 439887 0.6287319
chrIII 1 316620 13701 199553 316619 0.6302623
chrVI 1 270161 10662 167222 270160 0.6189740
chrI 1 230218 7972 128701 230217 0.5590421
chrM 1 85779 3264 58599 85778 0.6831472

It's worth noting that just computing coverage over the genome isn't the most useful thing, but you might compute coverage over a set of genes or regions
of interest. Coverage is really useful coupled with intersect or subtract as well.

bedtools : collapsing bookended elements (or elements within a certain distance)merge

http://hgdownload-test.cse.ucsc.edu/goldenPath/sacCer3/bigZips/

When we originally examined the bed files produced from our BAM file, we can see many reads that overlap over the same interval. While this level of
detail is useful, for some analyses, we can collapse each read into a single line, and indicate how many reads occurred over that genomic interval. We
can accomplish this using . mergebedtools

bedtools merge [OPTIONS] -i experiment.bed > experiment.merge.bed

Bedtools merge also directs the output to standard out, to make sure to point the output to a file or a program. While we haven't discussed the options
 Many of the options define what to do with each column (-c) of the output (-o). This for each bedtools function in detail, here they are very important.

defines what type of operation to perform on each column, and in what order to output the columns. Standard bed6 format is chrom, start, stop, name,
 and controlling column operations allows you to control what to put into each column of output. The valid operations defined by the -o score, strand

operation are as follows:

sum, min, max, absmin, absmax,
mean, median,
collapse (i.e., print a delimited list (duplicates allowed)),
distinct (i.e., print a delimited list (NO duplicates allowed)),
count
count_distinct (i.e., a count of the unique values in the column)

For this exercise, we'll be summing the number of reads over a region to get a score column, using distinct to choose a name, and using distinct again to
keep track of the strand. For the -c options, define which columns to operate on, in the order you want the output. In this case, to keep the standard bed
format, we'll list as -c 5,4,6 and -o count_distinct,sum,distinct, to keep the proper order of name, score, strand. Strandedness can also be controlled with m

, using the -s option. erge

Exercise 4: Use to merge an experiment, look at the output and see how many lines there are in the file.bedtools merge

Hint: make sure to remove whitespace between lists for the -c and -o options!

solution code

bedtools merge -s -c 4,5 -o count_distinct,sum -i yeast_pairedend_sort.mapped.q1.bed > yeast_pairedend_sort.
mapped.q1.merge.bed
more yeast_pairedend_sort.mapped.q1.merge.bed
wc -l yeast_pairedend_sort.mapped.q1.merge.bed

#without strand considered
bedtools merge -c 4,5,6 -o count_distinct,sum,distinct -i yeast_pairedend_sort.mapped.q1.bed >
yeast_pairedend_sort.noStrand.mapped.q1.merge.bed

http://bedtools.readthedocs.org/en/latest/content/tools/merge.html

wc -l yeast_pairedend_sort.noStrand.mapped.q1.merge.bed
40319 yeast_pairedend_sort.noStrand.mapped.q1.merge.bed #without the -s option

wc -l yeast_pairedend_sort.mapped.q1.merge.bed
76601 yeast_pairedend_sort.mapped.q1.merge.bed #with the -s option

more yeast_pairedend_sort.mapped.q1.merge.bed
chrI 219 344 + 2 66
chrI 368 469 - 1 29
chrI 684 785 - 1 37
chrI 871 955 + 6 174
chrI 971 1079 - 7 211
chrI 1216 1322 + 6 157
chrI 1347 1437 - 6 157
chrI 2892 2993 + 14 406
chrI 3010 3111 + 1 37
chrI 3013 3107 - 14 406

more yeast_pairedend_sort.noStrand.mapped.q1.merge.bed
chrI 219 344 2 66 +
chrI 368 469 1 29 -
chrI 684 785 1 37 -
chrI 871 955 6 174 +
chrI 971 1079 7 211 -
chrI 1216 1322 6 157 +
chrI 1347 1437 6 157 -
chrI 2892 2993 14 406 +
chrI 3010 3111 15 443 +,-

Note the change in column order in the first set of commands. We can use awk like this to change the column order, either piped in the original command
or after the fact:

using awk for column reordering

#after the creation of the first file
cat yeast_pairedend_sort.mapped.q1.merge.bed | awk '{print $1 "\t" $2 "\t" $3 "\t" $5 "\t" $6 "\t" $4}' >
yeast_pairedend_sort.mapped.q1.merge.reorder.bed

#piped in-line
bedtools merge -s -c 4,5 -o count_distinct,sum -i yeast_pairedend_sort.mapped.q1.bed | awk '{print $1 "\t" $2
"\t" $3 "\t" $5 "\t" $6 "\t" $4}' > yeast_pairedend_sort.mapped.q1.merge.bed

bedtools intersect: identifying where two experiments overlap (or don't overlap)

One useful way to compare two experiments (especially biological replicates, or similar experiments in two yeast strains/cell lines/mouse strains) is to
compare where reads in one experiment overlap with reads in another experiment. offers a simple way to do this using the . Bedtools intersect function

bedtools intersect options

bedtools intersect [OPTIONS] -a <FILE> \
 -b <FILE1, FILE2, ..., FILEN>

The intersect function has many options that control how to report the intersection. We'll be focusing on just a few of these options, listed below.

-a and -b indicate what files to intersect. in -b, you can specify one, or several files to intersect with the file specified in -a.

wa: Write the original entry in A for each overlap.
wb: Write the original entry in B for each overlap. Useful for knowing what A overlaps. Restricted by -f and -r.
loj: Perform a “left outer join”. That is, for each feature in A report each overlap with B. If no overlaps are found, report a NULL feature for B.
wo: Write the original A and B entries plus the number of base pairs of overlap between the two features. Only A features with overlap are
reported. Restricted by -f and -r.
wao: Write the original A and B entries plus the number of base pairs of overlap between the two features. However, A features w/o overlap are
also reported with a NULL B feature and overlap = 0. Restricted by -f and -r.
f: Minimum overlap required as a fraction of A. Default is 1E-9 (i.e. 1bp).

http://bedtools.readthedocs.org/en/latest/content/tools/intersect.html

v: Only report those entries in A that have no overlap in B. Restricted by -f and -r. Useful to report what doesn't overlap, the inverse of typical
usage.
names: When using multiple databases (-b), provide an alias for each that will appear instead of a file Id when also printing the DB record.

In this section, we'll intersect two human experiments - one from sequencing RNA, and one from sequencing micro RNA. Copy these files over to your
directory:

copy some files over to intersect

cd $SCRATCH/core_ngs/
mkdir intersect
cd intersect
cp /corral-repl/utexas/BioITeam/core_ngs_tools/alignment/bam/human_mirnaseq_hg19.bam .
cp /corral-repl/utexas/BioITeam/core_ngs_tools/alignment/bam/human_rnaseq_bwa.bam .
ls -lah

-rwxrwxr-x 1 awh394 G-801021 19M May 22 18:57 human_mirnaseq_hg19.bam
-rwxrwxr-x 1 awh394 G-801021 6.6M May 22 18:57 human_rnaseq_bwa.bam

Before we can intersect these files, we need to perform the pipeline we used in to , and the files, and to convert from samtools index sort filter bedtools
BAM over to bed, then collapse down the files using . Below is a little workflow to help you through it on the files you just copied above.merge

My output (for length of bed files) is in the comments.

a samtools/bedtools workflow

module load samtools #if you haven't loaded it up this session

#sort both files
samtools sort human_mirnaseq_hg19.bam human_mirnaseq_hg19_sort # will take 1-2 minutes
samtools sort human_rnaseq_bwa.bam human_rnaseq_bwa_sort # will take 1-2 minutes

#index the new files
samtools index human_mirnaseq_hg19_sort.bam
samtools index human_rnaseq_bwa_sort.bam

#filter the sorted files, reindex the new filtered files
samtools view -b -F 0x04 -q 1 -o human_mirnaseq_hg19_sort.mapped.q1.bam human_mirnaseq_hg19_sort.bam
samtools view -b -F 0x04 -q 1 -o human_rnaseq_bwa_sort.mapped.q1.bam human_rnaseq_bwa_sort.bam
samtools index human_mirnaseq_hg19_sort.mapped.q1.bam
samtools index human_rnaseq_bwa_sort.mapped.q1.bam

#convert filtered bam files to bed format
module load bedtools #if you haven't loaded it in for this session

bedtools bamtobed -i human_mirnaseq_hg19_sort.mapped.q1.bam > human_mirnaseq_hg19_sort.mapped.q1.bed
bedtools bamtobed -i human_rnaseq_bwa_sort.mapped.q1.bam > human_rnaseq_bwa_sort.mapped.q1.bed

#check the length of the files:
wc -l *.bed
164806 human_mirnaseq_hg19_sort.mapped.q1.bed
22538 human_rnaseq_bwa_sort.mapped.q1.bed

#merge the bed files, check the length again
bedtools merge -s -c 4,5 -o count_distinct,sum -i human_mirnaseq_hg19_sort.mapped.q1.bed | awk '{print $1 "\t"
$2 "\t" $3 "\t" $5 "\t" $6 "\t" $4}' > human_mirnaseq_hg19_sort.mapped.q1.merge.bed
bedtools merge -s -c 4,5 -o count_distinct,sum -i human_rnaseq_bwa_sort.mapped.q1.bed | awk '{print $1 "\t" $2
"\t" $3 "\t" $5 "\t" $6 "\t" $4}' > human_rnaseq_bwa_sort.mapped.q1.merge.bed

wc -l *.merge.bed
14794 human_mirnaseq_hg19_sort.mapped.q1.merge.bed
7134 human_rnaseq_bwa_sort.mapped.q1.merge.bed

If we run low on time, you can copy the merged bed files over from my directory on scratch:

cds
cd intersect
cp /scratch/01786/awh394/core_ngs/intersect/human_mirnaseq_hg19_sort.mapped.q1.merge.bed .
cp /scratch/01786/awh394/core_ngs/intersect/human_rnaseq_bwa_sort.mapped.q1.merge.bed .

Exercise 5: Intersect two experiments using and examine the outputintersect

My output is commented in this code block.

cd intersect
module load bedtools #if you haven't loaded it up yet this session
bedtools intersect -wo -a human_rnaseq_bwa_sort.mapped.q1.merge.bed -b human_mirnaseq_hg19_sort.mapped.q1.merge.
bed > hg19_rnaseq_mirnaseq_intersect.bed

wc -l hg19_rnaseq_mirnaseq_intersect.bed
#38 hg19_rnaseq_mirnaseq_intersect.bed

more hg19_rnaseq_mirnaseq_intersect.bed
#chr1 20987370 20987471 1 37 - chr1 20987402 20987430 1 12 - 28
#chr1 25555557 25555616 1 37 + chr1 25555612 25555636 1 2 - 4
#chr1 25555557 25555617 1 37 - chr1 25555612 25555636 1 2 - 5
#chr1 28906396 28906497 1 37 + chr1 28906368 28906405 6 246 - 9
#chr1 33245783 33245884 1 37 + chr1 33245880 33245908 1 24 - 4

Using the options we've specified (-wo) the resulting file will have entries for file A, file B and the number of base pairs overlap between the feature in A
and the features in B, but . We could also use the -v option to only contain areas with we'll only retain lines where there is an overlap between A and B
NO intersection, or control the intersections with and options. is a powerful tool, and it's always a good idea to ask "what is this -f -r Bedtools intersect
code going to do?" while you're testing analysis workflows. It can be very useful to pipe your output to when you are unsure of the output of a more
command, as such:

pipe-ing output to more

bedtools intersect -wo -a human_rnaseq_bwa_sort.mapped.q1.merge.bed -b human_mirnaseq_hg19_sort.mapped.q1.merge.
bed | more

bedtools closest: when you want to know how far your regions are from a test set

The for manual page bedtools closest has a really nice image of how closest behaves with overlapping options. Bedtools closest first looks for any
overlaps of B with A, if it finds an overlap, the overlap in B with the highest proportional overlap with A is reported. If there are no overlaps, then it looks for
the closest genomic feature proximal to A (using distance from the start or end of A to do this).

bedtools intersect options

bedtools closest [OPTIONS] -a <FILE> \
 -b <FILE1, FILE2, ..., FILEN>

Much like , takes an A file and a series of B files. So if you wanted to determine the distance of your regions of bedtools intersect bedtools closest
 interest to several different classes of genes, would be a useful tool for that analysis.bedtools closest

s: Require same strandedness. That is, find the closest feature in B that overlaps A on the _same_ strand. By default, overlaps are reported
without respect to strand.
S: Require opposite strandedness. That is, find the closest featurein B that overlaps A on the _opposite_ strand. By default, overlaps are
reported without respect to strand.
d: In addition to the closest feature in B, report its distance to A as an extra column. The reported distance for overlapping features will be 0.
D: Like , report the closest feature in B, and its distance to A as an extra column. However unlike , use negative distances to report upstream -d -d
features.

ref Report distance with respect to the reference genome. B features with a lower (start, stop) are upstream.
a Report distance with respect to A. When A is on the - strand, “upstream” means B has a higher (start,stop).
b Report distance with respect to B. When B is on the - strand, “upstream” means A has a higher (start,stop).

io: Ignore features in B that overlap A. That is, we want close, yet not touching features only.
iu: Ignore features in B that are upstream of features in A. This option requires -D and follows its orientation rules for determining what is
“upstream”.
id: Ignore features in B that are downstream of features in A. This option requires -D and follows its orientation rules for determining what is
“downstream”
names: When using multiple databases (-b), provide an alias for each that will appear instead of a file Id when also printing the DB record.

http://bedtools.readthedocs.io/en/latest/content/tools/closest.html

In this section, we'll intersect the human_rnaseq_bwa_sort.mapped.q1.merge.bed file with some protein coding genes from Gencode (hg19). First go copy
a couple files from my scratch directory:

copy some gencode files over

cd $SCRATCH/core_ngs
mkdir closest
cd closest
cp /scratch/01786/awh394/core_ngs.test/closest/gencode.v19.proteincoding.genes.sort.merge.final .
cp ../intersect/human_rnaseq_bwa_sort.mapped.q1.merge.bed .
#or:
cp /scratch/01786/awh394/core_ngs/closest/human_rnaseq_bwa_sort.mapped.q1.merge.bed .

-rwxrwxr-x 1 awh394 G-801021 646K May 22 20:41 gencode.v19.proteincoding.genes.sort.merge.final

Exercise 6: Identify the closest protein coding genes (on the same strand) for the human rnaseq file using , then by the distance closest sort
column (largest, then smallest distance first).

My output is commented in this code block.

cd closest
module load bedtools #if you haven't loaded it up yet this session
sort -k1,1 -k2,2n human_rnaseq_bwa_sort.mapped.q1.merge.bed > human_rnaseq_bwa.mapped.q1.merge.sort.bed #need
to sort both files to the same order
bedtools closest -s -d -a human_rnaseq_bwa.mapped.q1.merge.sort.bed -b gencode.v19.proteincoding.genes.sort.
merge.final > hg19_rnaseq_protcode_closest.bed

wc -l hg19_rnaseq_protcode_closest.bed
#7134 hg19_rnaseq_protcode_closest.bed #same length as the original file

more hg19_rnaseq_protcode_closest.bed
#chr1 880458 880529 1 37 + chr1 860260 879955 SAMD11 . + 504
#chr1 881549 881650 1 37 - chr1 879584 894689 NOC2L . - 0
#chr1 887884 887985 1 37 + chr1 860260 879955 SAMD11 . + 7930
#chr1 892309 892410 1 37 - chr1 879584 894689 NOC2L . - 0
#chr1 892475 892576 1 23 + chr1 895967 901095 KLHL17 . + 3392

#sort by the distance to a gene, longest distances first
sort -k13,13nr hg19_rnaseq_protcode_closest.bed | more

#sort by the distance to a gene, shortest distances first
sort -k13,13n hg19_rnaseq_protcode_closest.bed | more

This is a nice way to examine your reads over annotated protein-coding genes. Note the strand specificity - only reads on the correct strand will be
reported when there is a + strand gene and a - strand gene over the same location.

bedtools subtract: removing features from your bed file

Bedtools subtract takes an A file and a B file, then searches for features in B that overlap A. When/if these features are identified, the overlapping
portion is removed from A and the remaining portion of A is reported. If a feature in B overlaps all of a feature in A, that feature will not be reported.

bedtools subtract options

bedtools subtract [OPTIONS] -a <BED/GFF/VCF> -b <BED/GFF/VCF>

Note that is performed on two files, and unlike some of the other utilities we've used, you can't use multiple B features here. However, bedtools subtract
you can use to join together features you'd like to subtract from your A file.cat

f: Minimum overlap required as a fraction of A. Default is 1E-9 (i.e. 1bp).
F: Minimum overlap required as a fraction of B. Default is 1E-9 (i.e., 1bp).
r: Require that the fraction of overlap be reciprocal for A and B. In other words, if -f is 0.90 and -r is used, this requires that B overlap at least
90% of A and that A also overlaps at least 90% of B.

1.
2.

a.
3.

a.
4.
5.

e: Require that the minimum fraction be satisfied for A _OR_ B. In other words, if -e is used with -f 0.90 and -F 0.10 this requires that either 90%
of A is covered OR 10% of B is covered. Without -e, both fractions would have to be satisfied.**-s** Force “strandedness”. That is, only report hits
in B that overlap A on the same strand. By default, overlaps are reported without respect to strand.
S: Require different strandedness. That is, only report hits in B that overlap A on the _opposite_ strand. By default, overlaps are reported without
respect to strand
A: Remove entire feature if any overlap. That is, by default, only subtract the portion of A that overlaps B. Here, if any overlap is found (or -f
amount), the entire feature is removed.
N: Same as -A except when used with -f, the amount is the sum of all features (not any single feature)

Let's do a little set-up for the next exercise:

copy some gencode files over

cd $SCRATCH/core_ngs
mkdir subtract
cd subtract
cp /scratch/01786/awh394/core_ngs.test/closest/gencode.v19.proteincoding.genes.sort.merge.final .
cp /scratch/01786/awh394/core_ngs.test/closest/gencode.v19.genes.sort.merge.final .

Exercise 7: remove the protein-coding genes from a gencode list of genes using subtract, then give a count of the non-protein-coding gene
entries

This allows you to identify which gene regions are not protein coding, and are likely pseudogenes, but could also be miRNAs, snRNAs or other genes that
aren't translated into a peptide sequence.

My output is commented in this code block.

cd subtract
module load bedtools #if you haven't loaded it up yet this session
bedtools subtract -a gencode.v19.genes.sort.merge.final -b gencode.v19.proteincoding.genes.sort.merge.final >
gencode.v19.not.proteincoding.genes.bed

wc -l gencode.v19.not.proteincoding.genes.bed
#23483 gencode.v19.not.proteincoding.genes.bed

more gencode.v19.not.proteincoding.genes.bed
#chr1 11869 14412 DDX11L1 . +
#chr1 14363 29806 WASH7P . -
#chr1 29554 31109 MIR1302-11 . +
#chr1 34554 36081 FAM138A . -
#chr1 52473 54936 OR4G4P . +
#chr1 62948 63887 OR4G11P . +

While the above example is not super useful in all cases, one might use the above workflow to remove genes that aren't of interest from a larger set.

A little bit of filtering, using awk

As a final note, yesterday we taught you about using a lot of unix utilities, including , and . One last utility I'd like to add, that is very useful for uniq sort cut
manipulating these types of tab delimited files, is . isn't a command, but rather a little text manipulation language in it's own right (which we awk Awk
briefly used above to rearrange the columns in a file). While can be used to do many different things, here we'll primarily use it to sort tab delimited awk
files based on the values present in those files. That is useful to filter your files for entries on a given chromosome, or greater than/less than a given
score. If your dataset is large, this type of filtering can be invaluable! Below is an example of a simple script:awk

a simple awk script

cat file.bed | awk 'BEGIN{FS="\t";OFS="\t";}{if ($6 == '+'){print}}' > file.plusStrand.bed

In the first section, we open the bed file of interest. Then we pipe that filestream to the awk program.
The section: BEGIN{FS="\t";OFS="\t";} tells awk to begin a filter, the input file is tab delimited, and the output file is also tab delimited.

Generally, you can leave this section constant (if you are working with tab delimited files).
The second section: {if ($6 == '+'){print}} is our selection and printing criteria.

"$6" indicates column 6, and == indicates "equals" or "matches".
The {print} command tells awk to print the whole line if the statement for column 6 evaluates to true.
Thus, the output file only contains those lines which satisfy the criteria in the selection statement.

We can do this filtering on the file we just created usinghg19_rnaseq_mirnaseq_intersect.bed bedtools intersect.

http://www.grymoire.com/Unix/Awk.html

cd $SCRATCH/core_ngs/intersect/
cat hg19_rnaseq_mirnaseq_intersect.bed | awk 'BEGIN{FS="\t";OFS="\t";}{if ($6 == "+"){print}}' | more

You could also insist on columns 6 and 12 both being the plus strand as such:

cd $SCRATCH/core_ngs/intersect/
cat hg19_rnaseq_mirnaseq_intersect.bed | awk 'BEGIN{FS="\t";OFS="\t";}{if ($6 == "+" && $12 == "+"){print}}' |
more

	Bedtools: Analyzing your aligned experiment

