
Linux fundamentals
This page should serve as a reference for the many "things Linux" we use in this course. It is by no means complete – Linux is – but offers **huge**
introductions to many important topics.

Terminal programs, shells and commands
The bash shell REPL and commands
Getting help
Literal characters and metacharacters
About command line input
Text lines and the Terminal
Command input errors

Basic Linux commands
Displaying file contents
File system navigation
Create, rename, link to, delete files
Copying files and directories
Miscellaneous commands

Advanced commands
cut, sort, uniq
awk

cut versus awk
grep and regular expressions
perl pattern matching
sed pattern substitution
perl pattern substitution

Field delimiter summary
Getting around in the shell

Command line history and editing
Tab key completion
Absolute and relative pathname syntax
Pathname wildcards

More Linux concepts
Standard streams and redirection
Piping

piping a histogram
Environment variables
Quoting in the shell

single and double quotes
backtick quoting and sub-shell evaluation

What is text?
Writing multiple text lines

heredoc
Bash control flow

the bash for loop
processing multiple files in a for loop
quotes matter

the if statement
reading file lines with while

File attributes
Owner and Group
Permissions

Copying files between TACC and your laptop
Editing files

nano
emacs
Line ending nightmares
Komodo Edit for Mac and Windows
Notepad++ for Windows

Other bash resources

Terminal programs, shells and commands

You need a program in order to to a remote computer.Terminal ssh

Macs and Linux have a program built-inTerminal
Windows options:

Windows 10+
Command Prompt and programs have and (may require latest Windows updates) PowerShell ssh scp

Start menu Search for Command
 Putty – http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

simple Terminal and file copy programs
download either the Putty installer or just (Terminal) and (secure copy client)putty.exe pscp.exe

Windows Subsystem for Linux – Windows 10 Professional includes a Ubuntu-like shells bash
See https://docs.microsoft.com/en-us/windows/wsl/install-win10
We recommend the Ubuntu Linux distribution, but any Linux distribution will have an SSH client

Use (ecure ell) to login to a remote computers.ssh s sh

SSH to a remote computer

General form:
ssh <user_name>@<full_host_name>

For example
ssh abattenh@ls6.tacc.utexas.edu

The bash shell REPL and commands

When you type something in at a , it the input, it, then the results, then does this over and over in a bash command-line prompt Reads Evaluates Prints
. This behavior is called a – a .Loop REPL Read, Eval, Print Loop

The input to the REPL is a , which consists of:bash command

The command name
One or more (optional) , usually noted with a leading () or ().options dash - double-dash --

short (1-character) options can be provided separately, prefixed by a single ()dash -
or can be combined with the combination prefixed by a single dash

long (multi-character or "word") options are prefixed with a () and must be supplied separately.double dash --
Both long and short options can be assigned a value

One or more command-line , which are often (but not always) file namesarguments

Some examples using the (i t files) command:ls l s

ls # example 1 - no options or arguments
ls -l # example 2 - one "short" (single character) option only (-l)
ls --help # example 3 - one "long" (word) option (--help)
ls .profile # example 4 - one argument, a file name (.profile)
ls --width=20 # example 5 - a long option that has a value (--width is the option, 20 is the value)
ls -w 20 # example 6 - a short option w/a value, as above, where -w is the same as --width
ls -l -a -h # example 7 - three short options entered separately (-l -a -h)
ls -lah # example 8 - three short options that can be combined after a dash (-lah)

The to are one or more file or directory names. If no arguments are provided, the contents of the are listed.arguments ls current directory
If an argument is a directory name, the contents of that directory are listed.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

1.

2.

3.

Some handy for :options ls

 shows a ong listing, including file permissions, ownership, size and last modified date.-l l
-a shows ll files, including whose names start with a period () which are normally not listeda dot files .
-h says to show file sizes in uman readable form (e.g. 12M instead of 12201749)h

Getting help

How do you find out what options and arguments a command uses?

In the , type in the command name then the long option (e.g.)Terminal --help ls --help
Works for most Linux commands; 3rd party tools may use or or even instead-h -? /?
May produce a lot of output, so you may need to scroll up quite a bit, or pipe the output to a pager

e.g. ls --help | more
a advances the output by one screen/"page", and typing will exit space Ctrl-C more

Use the built-in ual system (e.g. type)man man ls
This system uses the described belowless pager
For now, just know that a advances the output by one screen/"page", and typing will exit the display.space q

Ask the , e.g. search for Google ls man page
Can be easier to read

Literal characters and metacharacters

In the shell, and in most tools and programming environment, there are two kinds of input:bash

literal characters, that just represent (and print as) themselves
e.g. characters , , alphanumeric A-Z a-z 0-9

metacharacters - these are special characters that are associated with an operation in the environment
e.g. the () that tells the shell to ignore everything after the pound sign # comment character #

There are in : to name a few.many metacharacters bash # \ $ | ~ []

Pay attention to the different and their usages – which where they're used.metacharacters can depend on the context

About command line input

You know the command line is ready for input when you see the . The shell executes command line input when it sees a ccommand line prompt linefeed
haracter (, also called a), which happens when you press after entering the command.\n newline Enter

Note: The Unix () line delimiter is different from Windows, where the default line ending is (), and some Mac text linefeed \n carriage-return + linefeed \r\n
editors that just use a ().carriage return \r

More than one command can be entered on a single line – just separate the commands with a ().semi-colon ;

Multiple command on a line

cd; ls -lh

A single command can also be split across multiple lines by adding a backslash () at the end of the line you want to continue, before pressing .\ Enter

Split a command across multiple lines

ls6:~$ ls ~/.bashrc \
> ~/.profile

Notice that the shell indicates that it is not done with command-line input by displaying a (). You just enter more text then when greater than sign > Enter
done.

Text lines and the Terminal

Sometimes a line of text is longer than the width of your Terminal. In this case the text is . It can appear that the output is multiple lines, but it is wrapped
not. For example, files often have long lines:FASTQ

Use Ctrl-C to exit the current command input

At any time during command input, whether on the 1st command line prompt or at a continuation, you can press (on o key and the > Ctrl-c C tr l c
key at the same time) to get back to the command prompt.

head $CORENGS/misc/small.fq

Note that most let you increase/decrease the width/height of the window. But there will always be single lines too long for your Terminals Terminal Termin
width (and too many lines of text for its height).al

So how long is a line? So how many lines of output are there really? And how long is a line? The (ord ount) command can tell us this.wc w c

wc -l reports the number of in its inputines l
wc -c reports the number of in its input (including invisible characters)haracters c linefeed

And when you give multiple files, it reports the line count of each, then a total.wc -l

wc -l $CORENGS/misc/small.fq # Reports the number of lines in the small.fq file
cat $CORENGS/misc/small.fq | wc -l # Reports the number of lines on its standard input
wc -l $CORENGS/misc/*.fq # Reports the number of lines in all matching *.fq files
tail -1 $CORENGS/misc/small.fq | wc -c # Reports the number of characters of the last small.fq line

Command input errors

You don't always type in commands, options and arguments correctly – you can misspell a command name, forget to type a space, specify an
unsupported option or a non-existent file, or make all kinds of other mistakes.

What happens? The shell attempts to guess what kind of error it is and reports an appropriate error message as best it can. Some examples:

You type the name of a command that is not installed on your system
ls6:~$ lz
Command 'lz' not found, but can be installed with:
apt install mtools
Please ask your administrator.

You enter something that is close to an existing, or known, command
ls6:~$ catt
Command 'catt' not found, did you mean:
 command 'cat' from deb coreutils (8.30-3ubuntu2)
 command 'catty' from deb node-catty (0.0.8-1)
 command 'ratt' from deb ratt (0.0~git20180127.c44413c-2)
Try: apt install <deb name>

You try to use an unsupported option
ls6:~$ ls -z
ls: invalid option -- 'z'
Try 'ls --help' for more information.

You specify the name of a file that does not exist
ls6:~$ ls xxx
ls: cannot access 'xxx': No such file or directory

Basic Linux commands

One of the steepest Unix/Linux learning curves is the , all of which have sheer number of built-in commands many options – most of which you'll
, and the more advanced commands are never use extremely complex.

To help address this, this section introduces a number of built-in Linux utilities along with some of their common options, by category.

And here's a Linux commands cheat sheet you may find useful:

Displaying file contents

cat outputs all the contents of its input (one or more files and/or) or the specified filestandard input
cat -n prefixes each line of output with its line umbern

Command line arguments can be replaced by standard input

Most built-in Linux commands that obtain data from a file can also accept the data on their .piped in standard input

https://wikis.utexas.edu/download/attachments/33948791/UnixCommandCheatSheet.pdf?version=1&modificationDate=1345108704000&api=v2

CAUTION – only use on small files!
 zcat <file.gz> like , but understands the () format, and decompresses the data before writing it to cat gzip .gz standard output

CAUTION – only use on small files!
Another CAUTION – does not understand or compression formats.zip .bz2

more and less pagers
both display their (possibly very long) input one Terminal "page" at a time
in : more

use to advance a page spacebar
use or to exit q Ctrl-c more

in :less
q – quit

 Ctrl-f or – page forward space
Ctrl-b – page backward
/<pattern> – search for <pattern> in direction forward

n – next match
N – previous match

?<pattern> – search for <pattern> in direction backward
n – previous match going back
N – next match going forward

use to display line numbersless -N
less -I says to do pattern matching ignoring case
can be used directly on format files.gz

head and tail
show you the first or last 10 lines (by default) of their input
head -n 20 or just shows the first 20 lineshead -20
tail -n 2 or just shows the last 2 linestail -2
tail -n +100 shows lines starting at line 100
tail -n +100 | head -20 shows 20 lines starting at line 100
tail -f shows the last lines of a file, then ollows the output as more lines are written (to quit)f Ctrl-c

 gunzip -c <file.gz> | more (or) – like , un-compresses lines of and outputs them to less zcat <file.gz> standard output
<file.gz> is not altered on disk
always the output to a !pipe pager

File system navigation

ls - list the contents of the specified directory
-l says produce a ong listing (including file permissions, sizes, owner and group)l
-a says show ll files, even normally-hidden whose names start with a ()a dot files period .
-h says to show file sizes in uman readable form (e.g. 12M instead of 12201749)h
-t says to sort files on last modification imet
-r says to everse the current sort orderr
-d says to show directory listing information only, instead of directory contents

usually combined with , e.g.: -l <dirname>ls -ld
cd <whereto> - change the current working directory to . Some special :<whereto> <wheretos>

 (,) means " ".. period period up one directory level
 () means " "~ tilde my Home directory
- () means " "dash the last directory I was in

<in_directory> [operators] <expression> [tests]find -name
looks for files matching in and its sub-directories<expression> <in_directory>
<expression> can be a double-quoted string s (e.g. " ")including pathname wildcard [a-g]*.txt
there are of and :tons operators tests

-type f () and (irectory) are useful ilef -type d d tests
-maxdepth NN is a useful to limit the depth of recursion.operator

file <file> tells you what kind of file is<file>
df shows you the top level directory structure of the system you're working on, along with how much disk space is available

-h says to show sizes in uman readable form (e.g. 12G instead of 12318201749)h
pwd - display the resent orking irectoryp w d

-P says to display the full absolute path, resolving any symbolic links or relative path syntax
 - shows the file system hierarchy of the specified directory<directory>tree

is not always available on all Linux systemstree

Create, rename, link to, delete files

touch <file> – create an empty file, or update the modification timestamp on an existing file
mkdir -p <dirname> – create directory . <dirname>

-p says to create any needed sub-directories also
mv <file1> <file2> – renames to <file1> <file2>

mv /<file1> <file2> ... <fileN> <to_dir> – moves files into directory <file1> <file2> ... <fileN> <to_dir>
mv -t <dir> <file1> <file2> ... <fileN> – same as above, but specifies the arget directory as an option ()t -t <to_dir>

ln -s <path> creates a () (a.k.a) to in the current directorysymbolic -s link symlink <path>
default link name corresponds to the last name component in <path>

 always change into () the directory where you want the link before executing cd ln -s
a symbolic link can be deleted without affecting the linked-to file
ln -sf -t <target_dir> <file1> <file2> ... <fileN> – creates symbolic links to in arget directory <file1> <file2> ... <fileN> t <target_dir>

rm <file> deletes a file. This is - not a "trash can" deletion.permanent
rm -rf <dirname> deletes an entire directory – be careful!

Copying files and directories

cp ><source> [<source>...] <destination copies the file(s) to the directory and/or file name . <source> [<source>...] <destination>
using (period) as the destination means "here, with the same name".
-p option says to reserve file modification timestampsp
cp -r <dirname>/ <destination>/ will ecursively copy the directory and all its contents to the directory .r <dirname>/ <destination>/

scp @<user> <host>:<remote_source_path> <local_destination_path>
Works just like but copies machine to the cp <remote_source_path> from the remote host <local_destination_path>
-p (reserve file times) and (ecursive) options work the same as p -r r cp
scp <local_source_path> <user>@<host>:<remote_destination_path> is similar, but copies the to the <local_source_path> <remot

 on the . e_destination_path> remote host machine
A nice syntax resource is located .scp here

wget <url> fetches a file from a valid URL (e.g. , ,).http https ftp
-O <file> specifies the name for the local file (defaults to the last component of the URL)

rsync -arvW / /<source_directory> <target_directory>
rsync -ptlrvP / /<source_directory> <target_directory>

Recursively copies <source_directory> contents to , but only if files are newer or don't yet exist <target_directory> <source_directory>
in <target_directory>
Remote path syntax () can be used for either source or target (but not both).@ :<user> <host> <absolute_or_home-relative_path>

 Always include a trailing slash () after the source and target directory names!/
-a means "archive" mode (equivalent to and some other options)-ptl
-r means recursively copy sub-directories
-v means erbosev
-W means hole file only W

Normally the algorithm compares the contents of files that need to be copied and only transfers the different portions. rsync
This option disables file content comparisons, which are not appropriate for large and/or binary files.

-p means preserve file ermissionsp
 -t means preserve file imest

-l means copy symbolic links as inks (vs which means the link and copy the file it refers to)l -L dereference
-P means show transfer rogress (useful when large files are being transferred)P

Miscellaneous commands

echo <text> prints the specified text on standard output
evaluation of () inside the text may be performed firstmetacharacters special characters

 says to enable conversion of such as and -e backslash escapes \t Tab \n newline to their ASCII character
 says not to output the trailing -n newline

wc -l reports the number of ines () in its inputl -l
reports the number of haracters () in its input wc -c c -c
 reports the number of ords () in its inputwc -w w -w

 history lists your command history to the terminal
redirect to a file to save a history of the commands executed in a shell session
pipe to to search for a particular command grep

 which <pgm> searches all directories to find the program/command and reports its full pathname$PATH <pgm>
du <file_or_directory><file_or_directory>..

shows the isk sage (size) of the specified files/directoriesd u
-h says report the size in uman-readable form (e.g. 12M instead of 12201749)h
-s says ummarize the directory size for directoriess
-c says print a grand total when multiple items are specified

seq N generates a set of numbers, 1 through NN
groups - lists the you belong toUnix groups

Advanced commands

cut, sort, uniq

cut command lets you isolate of data from its input linesranges
 cut -f <field_number(s)> extracts one or more ields () from each line of its inputf -f

use -d <delim> to change the field elimiter (by default)d Tab
cut -c extracts one or more haracters () from each line of input<character_number(s)> c -c
the can be<numbers>

a comma-separated list of numbers (e.g.)1 4 7, ,
a range (e.g.)hyphen-separated 2 5-
a says "and all items after that" (e.g.)trailing hyphen 3 7, -

cut does not re-order fields, so acts like cut -f , ,5 3 1 -f , ,1 3 5
 sort sorts its input lines using an efficient algorithm

by default sorts each line (as strings), low to highlexically
use sort umerically ()-n n -n
use for ersion sort (numbers with surrounding text)-V V
use to everse the sort order-r r

use one or more -k ,<start_field_number> <end_field_number> options to specify a range of " eys" (fields) to sort onk
e.g. to sort field lexically and field as a number high-to-low -k -k nr1,1 2,2 1 2
by default, fields are delimited by -- one or more or whitespace spaces Tabs

use -t <delim> to change the field delimiter (e.g. for only; ignore spaces)-t " "\t Tab

http://www.hypexr.org/linux_scp_help.php

 uniq -c counts groupings of its input (which must be sorted) and reports the text and count for each group
use for a quick-and-dirty histogramcut | sort | uniq -c

awk

 awk is a powerful scripting language that is easily invoked from the command line. Its field-oriented capabilities make it the go-to tool for manipulating
table-like delimited lines of text.

<script> awk ' ' - the is applied to each of input (generally piped in) '<script>' line
 always enclose in to inhibit shell evaluation, because has its own set of that are different from the '<script>' single quotes awk metacharacters

shell's

Example that prints the average of its input numbers (converts like to the ASCII character so echo -e backslash escape characters newline \n newline
that the numbers appear on separate lines)

echo -e "1\n2\n3\n4\n5" | awk '
BEGIN{sum=0; ct=0}
{ sum = sum + $1
 ct = ct + 1 }
END{print sum/ct}'

General structure of an script: awk

BEGIN { }<expressions> – use to initialize variables before any script body lines are executed
e.g. BEGIN {FS= ; OFS= ; = }":" " "\t sum 0; ct=0

says use () as the (), and () as the () colon : input field separator FS Tab \t output field separator OFS
the default () is input field separator FS whitespace

one or more or spaces Tabs
the default is a output field separator ()OFS single space

initializes the variables and to sum ct 0
{ }<body expressions> – expressions to apply to each line of input

use , , etc. to pick out specific input fields of each line$1 $2
e.g. adds field 4 of the input to the variable { = + $4}sum sum sum

the built-in variable is the number of fields in the current lineNF
the built-in variable is the record (line) number of the current lineNR

END { }<expressions> – executed after all input is complete
e.g. prints the final value of the and variables, separated by the . sum,END {print ct} sum ct output field separator

Here is an , very detailed and in-depthexcellent awk tutorial

cut versus awk

The basic functions of and are similar – both are field oriented. Here are the main differences: cut awk

Default field separators
 Tab is the default field separator for cut

 whitespace (one or more or) is the default field separator for spaces Tabs awk
Re-ordering

 cut cannot re-order fields
 awk can re-order fields, based on the order you specify

 awk is a full-featured programming language while is just a single-purpose utility. cut

grep and regular expressions

grep -P '<pattern>' searches for in its input, and only outputs containing it<pattern> lines
always enclose in single quotes to inhibit shell evaluation!'<pattern>'

pattern-matching in are very different from those in the shellmetacharacters grep
-P says to use patterns, which are much more powerful (and standard) than default patterns Perl grep
-v (in erse match) – only print lines with v no match
-n (line umber) – prefix output with the line number of the matchn
-i (case nsensitive) – ignore case when matchingi
-l says return only the that the pattern matchnames of files do contain
-L says return only the that the pattern matchnames of files do not contain
-c says just return a ount of line matchesc
-A (fter) and (efore) – output number of lines after or before a match<n> A -B <n> B <n>

A (regular expression regex) is a of to search for and that control and modify how matching is done.pattern literal characters metacharacters

A <pattern>regex can contain special and , which are the "gold standard", match metacharacters modifiers. The ones below are Perl metacharacters
supported by most languages (e.g.)grep -P

^ – matches of line beginning
 $ – matches of line end

 . – (period) matches any character single

http://www.grymoire.com/Unix/Awk.html

* – modifier; place after an expression to match occurrences0 or more
+ – modifier, place after an expression to match occurrences1 or more
? – modifier, place after an expression to match occurrences0 or 1
\s – matches any character (any)whitespace \S -non whitespace
\d – matches igits d 0-9
\w – matches any ord character: , , and ()w A-Z a-z 0-9 _ underscore
\t matches ; Tab
\n matches matches linefeed; \r carriage return
[]xyz123 – matches any (including special characters) among those listed between the brackets single character []

this is called a .character class
use to match any single character listed in the class[^]xyz123 not

(|)Xyz Abc – matches either or or any text or expressions inside parentheses separated by characters Xyz Abc |
note that parentheses may also be used to for later use () capture matched sub-expressions

Regular expression modules are available in nearly every programming language (, , , , , even)Perl Python Java PHP awk R

each "flavor" is slightly different
even has multiple regex commands: , , . bash grep egrep fgrep

There are many good online regular expression tutorials, but be sure to pick one tailored to the language you will use.

here are some good ones:
a good general one: https://www.regular-expressions.info/
Ryan's tutorials on Regular Expressions: http://ryanstutorials.net/regular-expressions-tutorial/
RegexOne: http://regexone.com

and a regex tutorial: perl http://perldoc.perl.org/perlretut.html
 perl regular expressions are the "gold standard" used in most other languages

perl pattern matching

If pattern matching isn't behaving the way I expect, I turn to . While Perl, like awk, is a fully functional programming language, Here's how to grep perl
invoke regex pattern matching from a command line using :perl

perl -n -e 'print $_ if $_=~/ /'<pattern>

sed pattern substitution

The command can be used to using . sed (tring itor) s ed edit text pattern substitution

sed 's/ / /'<search pattern> <replacement>

While is very powerful, the syntax for its more advanced features is quite different from "standard" or regular expressions. As a result, sed regex grep perl
I tend to use it only for , usually as a component of a multi-pipe expression.very simple substitutions

perl pattern substitution

If I have a more complicated pattern, or if pattern substitution is not working as I expect (which happens frequently!), I again turn to . Here's how to sed perl
invoke pattern substitution from a command line:perl

perl -p -e '~s/ / /'<search pattern> <replacement>

Parentheses () around one or more text sections in the will cause matching text to be in built-in variables , , etc., <search pattern> captured perl $1 $2
following the order of the parenthesized text. The can then be used in the .capture variables <replacement>

Field delimiter summary

Be aware of the the various utilities, and how to change them:default field delimiter for bash

utility default delimiter how to change example

cut Tab -d or option--delimiter cut -d ':' -f 1 /etc/passwd

sort (one or more or)whitespace spaces Tabs -t or --field-separator
option

sort -t ':' -k1,1 /etc/passwd

awk (one or more or)whitespace spaces Tabs

Note: some older versions of do not treat awk Tab
as field separators.s

In the BEGIN { } block
 FS= (input field

)separator
 OFS= (output

)field separator
-F or --field-separator
option

cat /etc/fstab | grep -v '^#' | awk 'BEGIN{OFS="\t"}
{print $2,$1}'
cat /etc/passwd | awk -F ":" '{print $1}'

https://www.regular-expressions.info/
http://ryanstutorials.net/regular-expressions-tutorial/
http://regexone.com
http://perldoc.perl.org/perlretut.html

1.
2.
3.

join one or more spaces -t option join -t $'\t' -j 2 file1 file12

perl (one or more or) whitespace spaces Tabs when
auto-splitting input with -a

-F'/<pattern>/' option cat /etc/fstab | grep -v '^#' | perl -F'/\s+/' -a -n -
e 'print "$F[1]\t$F[0]\n";'

read (one or more or)whitespace spaces Tabs IFS= (input field separator
) option

Note that a bare , so whole lines are IFS= removes any field separator
read each loop iteration.

Getting around in the shell

Type as little and as accurately as possible by using keyboard shortcuts!

Command line history and editing

Sometimes you want to repeat a command you've entered before, possibly with some changes.

The built-in command lists the commands you've entered, each with a number.history
You can re-execute any command in the history by typing an () then the numberexclamation point !
e.g. re-executes the 15th command in your history.!15

Use to retrieve any of the last 50+ commands you've typed, going backwards through your history. Up arrow
You can then edit the retrieved line, and hit (even in the middle of the command), and the shell will use that command. Enter

The "scrolls" forward from where you are in the command history.Down arrow

The command line (small thick bar on the command line) marks where you are on the command line.cursor

Right arrow and move the cursor forward or backward on the current command line.Left arrow
Use (holding down the on o key and) to jump the cursor to the of the line.Ctrl-a C tr l a beginning
Use to jump the cursor to the of the line.Ctrl-e nde
Arrow keys are also modified by Ctrl- (Windows) or Option- (Mac)

Ctrl-right-arrow (Windows) or (Mac) will skip by "word" forwardOption-right-arrow
Ctrl-left-arrow (Windows) or (Mac) will skip by "word" backwardOption-left-arrow

Once the is positioned where you want it:cursor

Just type in any additional text you want
To delete text the cursor, use: after

Delete key on Windows
 Function-Delete keys on Macintosh

To delete text the cursor, use: before
 Backspace key on Windows

 Delete key on Macintosh
Use (ill) to delete everything on the line the cursorCtrl-k k after
Use (ank) to copy the last killed text to where the cursor isCtrl-y y

Tab key completion

Hitting when entering command line text invokes , instructing the shell to try to what you're doing and finish the typing for you. Tab shell completion guess
It's almost magic!

On most modern Linux shells you use completion by pressing:Tab

single Tab – completes file or directory name up to any ambiguous part
if nothing shows up, there is no unambiguous match

Tab – display all possible completions twice
you then decide where to go next

shell completion works for commands too (like)python

Absolute and relative pathname syntax

An lists all components of the full that describes a file. always start with the (absolute pathname file system hierarchy Absolute paths forward slash /
), which is the of the file system hierarchy. Directory names are separated by the () .root forward slash /

You can also specify a directory to where you are using one of the :relative special directory names

single period (.) means " "the current directory
two periods () means " ". . directory above the current

 tilde () means " "~ my Home directory

Avoid special characters in filenames

Pathname wildcards

The shell has shorthand to refer to groups of files by allowing in file names.wildcards

Using these is sometimes called , and the pattern a .wildcards filename globbing glob

asterisk () is the most common filename wildcard. It matches * any length of any characters
brackets () match [] any character between the brackets

and you can use a () to specify a range of characters (e.g.)hyphen - [A-G]
braces () enclose a list of comma-separated strings to match (e.g.){ } {dog,pony}

For example:

ls *.bam – lists all files in the current directory that end in .bam
ls []A-Z *.bam – does the same, but only if the first character of the file is a capital letter
ls []ABcd *.bam – lists all files whose 1st letter is , , or ..bam A B c d
ls { }*. fastq,fq .gz – lists all and files..fastq.gz .fq.gz

More Linux concepts

Standard streams and redirection

Most Linux commands write their results to , a built-in stream that is mapped to your , but that data can be to a file standard output Terminal redirected
instead.

In fact every Linux command and program has three : , and . Each has a standard Unix streams standard input standard output standard error
number, a name, and syntax:redirection

standard output is stream 1
redirect to a file with a the or standard output > 1> redirection operator

a single or any existing data in the target file> 1> overwrites
a double or to any existing data in the target file>> 1>> appends

 standard error is stream 2
redirect to a file with a the standard error > 2 redirection operator

a single any existing data in the target file2> overwrites
a double to any existing data in the target file2>> appends

It is easy to not notice the difference between and when you're in an interactive session – because both standard output standard error Terminal
outputs are sent to the window. But they are separate streams, with different meanings. In particular, programs write error and/or diagnostic Terminal
messages to , not to .standard error standard output

Here's a command that shows the difference between and : standard error standard output

ls /etc/fstab xxx.txt

Produces this output in your :Terminal

While it is possible to create file and directory names that have embedded spaces, that creates problems when manipulating them.

To avoid headaches, it is best not to create file/directory names with embedded spaces, or with special characters such as + & # ()

ls: cannot access 'xxx.txt': No such file or directory
/etc/fstab

What is not obvious, since both streams are displayed on the , is that:Terminal

the diagnostic text " " is being written to ls: cannot access 'xxx.txt': No such file or directory standard error
the listing of the existing file (" ") is being written to /etc/passwd standard output

To see this, redirect and to different files and look at their contents:standard output standard error

ls /etc/fstab xxx.txt 1> stdout.txt 2>stderr.txt
cat stdout.txt # Displays "/etc/fstab"
cat stderr.txt # Displays "ls: cannot access 'xxx.txt': No such file or directory"

What if you want both and to go to the same file? You use this somewhat odd redirection syntax:standard output standard error 2>&1

Redirect both standard output and standard error to the out.txt file
ls /etc/fstab xxx.txt > out.txt 2>&1

Display the contents of the out.txt file
cat out.txt

produces output like this:
ls: cannot access 'xxx.txt': No such file or directory
/etc/fstab

Two final notes.

When is redirected to a file, the data is displayed on the standard output not Terminal
If you want the data written to both (the) and a file, use the commandstandard output Terminal tee
e.g. ls -l ~ | tee home_dir_listing.log

There is a special Linux file called that serves as a " " – it just throws away anything you write to it./dev/null global trash can
So you can direct and/or to to ignore it completely.standard output standard error /dev/null

When running batch programs and scripts you will want to manipulate and from programs appropriately – especially for standard output standard error
3rd party programs that often produce both results data and diagnostic/progress messages.

Piping

Most programs/commands data from some , then to some . A data can be a file, but can also be read input source write output destination source stand
. Similarly, a data can be a file but can also be a such as .ard input destination stream standard output

The power of the Linux command line is due in no small part to the power of . The () connects one program's to piping pipe operator | standard output
the next program's .standard input

A simple example is piping uncompressed data "on the fly" to count its lines using (ord ount command with the ines option).wc -l w c l

Pipe uncompressed output to a pager

zcat is like cat, except that it understands the gz compressed format,
and uncompresses the data before writing it to standard output.
So, like cat, you need to be sure to pipe the output to a pager if
the file is large.
zcat big.fq.gz | wc -l

piping a histogram

But the real power of piping comes when you stitch together a string of commands with pipes – it's incredibly flexible, and fun once you get the hang of it.

For example, here's a simple way to make a histogram of mapping quality values from a subset of file records.BAM

The power of chaining pipes

create a histogram of mapping quality scores for the 1st 1000 mapped bam records
samtools view -F 0x4 small.bam | head -1000 | cut -f 5 | sort -n | uniq -c

samtools view converts the binary file to text and writes alignment record lines one at a time to .small.bam standard output
-F 0x4 option says to filter out any records where the flag bit is (not set)0x4 0
since the flag bit is set () for records, this says to only report records where the query sequence did map to the 0x4 1 unmapped
reference

| head -1000
the pipe connects the of to the of standard output samtools view standard input head
the option says to only write the first 1000 lines of input to -1000 standard output

| cut -f 5
the pipe connects the of standard output head to the of standard input cut
the option says to only write the 5th field of each input line to ()-f 5 standard output input fields are tab-delimited by default

the 5th field of an alignment record is an integer representing the alignment mapping quality
 the resulting output will have one integer per line (and 1000 lines)

| sort -n
the pipe connects the of standard output cut to the of standard input sort
the option says to sort input lines according to sort order-n numeric
the resulting output will be 1000 numeric values, one per line, sorted from lowest to highest

| uniq -c
the pipe connects the of standard output sort to the of standard input uniq
the option option says to just groups of lines with the same value (that's why they must be sorted) and report the total for each -c count
group
the resulting output will be one line for each group that sees uniq
each line will have the text for the group (here the unique mapping quality values) and a count of lines in each group

Environment variables

Environment variables are just like variables in a programming language (in fact a complete programming language), they are "pointers" that bash is
reference data assigned to them. In , you assign an environment variable as shown below:bash

Set an environment variable

export varname="Some value, here it's a string"

You environment variables using the bare name (above). set varname

You then or an using a () before the name:refer to evaluate environment variable dollar sign $ evaluation operator

Refer to an environment variable

echo $varname

The keyword when you're setting ensures that any sub-processes that are invoked will inherit this value. Without the only the current shell export export
process will have that variable set.

Use the command to see all the environment variables you currently have set. env

Quoting in the shell

What different quote marks mean in the shell and when to use can be quite confusing.

When the shell processes a command line, it first the text into (" "), which are groups of characters separated by (one or parses tokens words whitespace
more characters). affects how this parsing happens, including how are treated and .space Quoting metacharacters how text is grouped

Careful – when assigning environment variable values.do not put spaces around the equals sign

Also, always surround the value with () if it contains (or might contain) .double quotes " " spaces

1.

2.

3.

There are three types of quoting in the shell:

single quoting (e.g.) – this serves two purposes'some text'
It together all text inside the quotes into a groups single token
It tells the shell not to "look inside" the quotes to perform evaluations any

all metacharacters inside the single quotes are ignored
in particular, any in single-quoted text are environment variables not evaluated

double quoting (e.g.) – also serves two purposes"some text"
it together all text inside the quotes into a groups single token
it allows evaluation, but inhibits environment variable some metacharcters

e.g. asterisk () * pathname globbing and some other metacharacters
double quoting also in the textpreserves any special characters

e.g. () or ()newlines \n Tabs \t
backtick quoting (e.g.) `date`

evaluates the expression inside the marks ()backtick ` `
the of the expression replaces the text inside the marks ()standard output backtick ` `
the syntax is equivalent$() date

The quote characters themselves () are that tell the shell to " " then " " when the ' " ` metacharacters start a quoting process end a quoting process
matching quote is found. Since they are part of the processing, the .enclosing quotes are not included in the output

single and double quotes

The is: so that the command sees the quoted text as first rule of quoting always enclose a command argument in quotes if it contains spaces one
. In particular, always use () or () when you define an whose value contains .item single ' double " quotes environment variable spaces

foo='Hello world' # correct - defines variable "foo" to have value "Hello world"
foo=Hello world # error - no command called "world"

These two expressions using or are different because the tell the shell to treat the quoted text as a literal, double quotes single quotes single quotes
and not to look inside it for processing.metacharacter

Inside double quotes, the text "$USER" is evaluated and its value substituted
echo "my account name is $USER"

Inside single quotes, the text "$USER" is left as-is
echo 'the environment variable storing my account name is $USER'

backtick quoting and sub-shell evaluation

backtick () is one of the underappreciated wonders of Unix. The shell:` ` evaluation quoting

evaluates the expression/command inside the marks ()backtick ` `
the of the expression replaces the text inside the standard output backticks

An example, using the function that just writes the current date and time to , which appears on your .date standard output Terminal

date # Calling the date command just displays date/time information
echo date # Here "date" is treated as a literal word, and written to standard output
echo `date` # The date command is evaluated and its standard output replaces `date`

A slightly different syntax, called , also evaluates the expression inside and replaces it with the expression's .sub-shell evaluation $() standard output

If you see the () character after pressing , it can mean that your , and the shell is waiting for more greater than > Enter quotes are not paired
input to contain the missing quote of the pair (either single or double). Just use to get back to the prompt.Ctrl-c

To display a as a literal inside double quotes, use the () character to the following character.metacharacter backslash \ escape

Inside double quotes, use a backslash (\) to escape the dollar sign ($) metacharacter
echo "the environment variable storing my account name is \$USER"

today=$(date); echo $today # environment variable "today" is assigned today's date
today="Today is: `date`"; echo $today # "today" is assigned a string including today's date

What is text?

So what exactly text? That is, what is stored in files that the shell interprets as text?is

On standard Unix systems, each text character is stored as – – in a format called (merican tandard ode for nformatione byte eight binary bits ASCII A S C I
on nterchange). Eight bits can store 2 = 256 values, numbered 0 - 255.I ^8

In its original form values 0 - 127 were used for standard ASCII characters. Now values 128 - 255 comprise an Extended set. See https://www.asciitable.
com/

However -- in fact the "printable" characters start at 32 ().not all ASCII "characters" are printable ASCII space

ASCII values 0 - 31 have special meanings. Many were designed for use in early modem protocols, such as EOT (end of transmission) and ACK
(acknowledge), or for printers, such as VT (vertical tab) and FF (form feed).

The we care most about are:non-printable ASCII characters

Tab (decimal 9, hexadecimal , octal 0o011)0x9
backslash escape: \t

Linefeed/Newline (decimal 10, hexadecimal , octal 0o012)0xA
backslash escape: \n

Carriage Return (decimal 13, hexadecimal , octal 0o015)0xD
backslash escape: \r

Let's use the command (really an , defined in your login script) to look at the actual codes stored in a file:hexdump alias ~/.bashrc ASCII

tail ~/.bashrc | hexdump

This will produce output something like this:

Each line here describes 16 characters, in three display areas:

The numeric offset of the 16-character line, in hexadecimal (base 16)
16 decimal is 0x10 hex

The numeric value (code) for each character, again in hexadecimalASCII
each 2-digit hex number represents one 8-bit byte/character

The translated text, written between a () and () signgreater than > less than <
The display character associated with each code, or a () for non-printable charactersASCII period .

Notice that are (decimal 32), and the characters appear as (decimal 10).spaces ASCII 0x20 newline 0x0a

Why hexadecimal? Programmers like hexadecimal (base 16) because it is easy to translate hex digits to binary, which is how everything is represented in
computers. And it can sometimes be important to know which binary bits are 1s and which are 0s. (Read more about)Decimal and Hexadecimal

Writing multiple text lines

There are several ways to output . You can:multi-line text

Start the text with a or a single quote double quote
press when you want to start a new lineEnter
keep entering text and until you're satisfiedEnter
supply the matching or a then single quote double quote Enter

https://www.asciitable.com/
https://www.asciitable.com/
https://wikis.utexas.edu/display/CoreNGSTools/Decimal+and+Hexadecimal

example:

echo 'My
name is
Anna'

Use echo -e
The option tells to replace some special characters that represent non-printable characters with their -e echo backslash escapes
associated ASCII codes

So will be replaced by a () character and will be replaced by a .\n newline linefeed \t Tab
example:

echo -e "My\nname is\nAnna"

heredoc

Another method for writing multi-line text that can be useful for composing a large block of text in a script, is the syntax, where a block of text is heredoc
specified between two user-supplied , and that text block is sent to a command. The general form of a is:block delimiters heredoc

COMMAND << DELIMITER
..text...
..text...
DELIMITER

For example, using the (arbitrary) delimiter and the command:EOF cat

cat << EOF
This text will be output
And this USER environment variable will be evaluated: $USER
EOF

Here the block of text provided to is just displayed on the . To write it to a file just use the or redirection syntax in the command:cat Terminal 1> > cat

cat 1> out.txt << EOF
This text will be output
And this USER environment variable will be evaluated: $USER
EOF

The file will then contain this text:out.txt

This text will be output
And this USER environment variable will be evaluated: student01

Bash control flow

the bash for loop

As in many programming languages, a performs a series of expressions on one or more item in the 's .for loop for argument list

The loop has the general structure:bash for

for in <variable_name> <list of space-separated items>
do <something>
 <somthing else>
done

The should be (or evaluate to) 's : a list of items (e.g. or).<items> for argument list space-separated 1 2 3 4 *.gz`ls -1 `

The 2nd (ending) you specify for a must appear at the of a new line.block delimiter heredoc start

for loop example

for num in `seq 4`
do
 echo $num
done

or, since bash lets you put multiple commands on one line
if they are each separated by a semicolon (;)
for num in `seq 4`; do echo $num; done

Gory details:

The expression uses to generate a set of 4 numbers: .`seq `4 backtick evaluation 1 2 3 4
The / block expressions are executed once for each of the items in the listdo done
Each time through the loop (the / block) the variable named is assigned one of the values in the listdo done num

Then the value can be used by referencing the variable using num$
The variable name is arbitrary – it can be any name we choosenum

processing multiple files in a for loop

One common use of loops is to process multiple files, where the set of files to process is obtained by pathname . For example, the code for wildcarding
below counts the number of reads in a set of compressed files:FASTQ

For loop to count sequences in multiple FASTQs

for fname in *.gz; do
 echo "$fname has $((`zcat $fname | wc -l` / 4)) sequences"
done

quotes matter

We saw how allow the shell to evaluate certain in the quoted text.double quotes metacharacters

But more importantly when to a variable, quoting the evaluated variable assigning multiple lines of text preserves any special characters in the
such as or characters.variable value's text Tab newline

Consider this case where a captured string contains , as illustrated below.newlines

txt=$(echo -e "aa\nbb\ncc")
echo "$txt" # inside double quotes, newlines preserved
echo $txt # without double quotes, newlines are converted to spaces

This difference is very important!

you when do want to preserve newlines processing one line of text at a time
you when a loop processes (which must all be on one line) do not want to preserve newlines specifying the list of values for

See the difference:

nums=$(seq 5)
echo $nums
echo "$nums"

echo $nums| wc -l # newlines converted to spaces, so only one line
echo "$nums" | wc -l # newlines preserved, so reports 5

This loop prints a line for each of the files
for n in $nums; do
 echo "the number is: '$n'"
done

But this loop prints only one line
for n in "$nums"; do
 echo "the number is: '$n'"
done

the if statement

The general form of an statement in is:if/then/else bash

if [] <test expression>
then <expression> [expression...]
else <expression> [expression...]
fi

Where

The is any expression that evaluates to or <test expression> true false
In the shell, the number 0 (or an empty value) is false
Anything else is true
There must be around the separating it from the enclosing bracket .at least one space <test expression> []
Double brackets can also be used to enclose the [[]] <test expression>

When the is the expressions are evaluated.<test expression> true then
When the is the expressions are evaluated.<test expression> false else

A simple example:

for val in 5 0 "27" "$emptyvar" abc '0'; do
 if ["$val"]
 then echo "Value '$val' is true"
 else echo "Value '$val' is false"
 fi
done

A good reference on the many built-in conditionals: bash https://www.gnu.org/software/bash/manual/html_node/Bash-Conditional-Expressions.html

reading file lines with while

The function can be used to read input one line at a time, in a loop. read bash while

While the full details of the commad are complicated (see) this read-a-read https://unix.stackexchange.com/questions/209123/understanding-ifs-read-r-line
line-at-a-time idiom works nicely.

while IFS= read line; do
 echo "Line: '$line'"
done < ~/.bashrc

The clears all of 's default input field separators, which is normally (one or more or). IFS= read whitespace spaces Tabs
This is needed so that will set the variable to the contents of the input line, and not strip leading from it.read line exactly whitespace

The lines are redirected from to the of the loop by the expression after the keyword.~/.bashrc standard input while < ~/.bashrc done

If the input data is well structured, its fields can be read directly into variables. Notice we can pipe all the output to – or could redirect it to a file.more

https://www.gnu.org/software/bash/manual/html_node/Bash-Conditional-Expressions.html
https://unix.stackexchange.com/questions/209123/understanding-ifs-read-r-line

1.
2.
3.
4.
5.
6.
7.
8.
9.

tail /etc/passwd | while IFS=':' read account x uid gid name shell
do
 echo $account $name
done | more

File attributes

Consider a long listing of our .Home directory

There are 9 columns in this long listing: -separatedwhitespace

file permissions - a 10-character field
number of - rarely importantsub-components associated with a directory
account name of the file owner
Unix associated with the filegroup
file size
last modification month
last modification day
last modification year, or if within the last yearlast modification hour/minute
file name

Notice I call everything a , even directories. That's because – one that contains information about the file directories are just a special kind of file
directory's contents.

Owner and Group

A file's is the that created the file (here , me). That belongs to one or more , and the associateowner Unix account abattenh account Unix groups group
d with a file is listed in field 4.

The will always be a member of the associated with a file, and other accounts may also be members of the same group. is owner Unix group G-801021
one of the I belong to at TACC. To see the you belong to, just type the command.Unix groups Unix groups groups

Permissions

File permissions and information about the are encoded in that 1st 10-character field. Permissions govern , and what file type who can access a file acti
.ons they are allowed

character 1 describes the (for , for , for)file type d directory - regular file l symbolic link
the are 3 sets of 3-character designationsremaining 9 characters

characters 2-4: what the can doowning user account
characters 5-7: what other members of the associated can doUnix group
characters 8-19: what non-group members () can doother everyone

Each of the 3-character sets describes if () () and (or) actions are allowed, or (). read r write w execute x s not allowed -

read () access means file contents can be read, and copiedr
write () access means a file's contents can be changed, and directory contents can be modified (files added or deleted)w
execute (or)x s

for , () means it is files execute x a program that can be called/executed
e.g. , the file that performs the command/usr/bin/ls ls

for , () means may be performed/executeddirectories execute x directory operations
the directory can be and listed changed into

Examples:

 ~/.bash_historyls -l

haiku.txt description

dash () in position one signifies this is a - regular file
rw- for allows read and write accessowner
r-- for permits only read accessgroup
--- for means no access allowedeveryone

 /usr/bin/lsls -l

/usr/bin/ls description

/usr/bin/ls is the that performs the commandprogram ls
root (the master admin account) is the owner, in the grouproot

dash () in position one signifies this is a - regular file
rwx for allows read, write and executeowner
r-x for permits read and executegroup
r-x for permits read and executeeveryone

 ~/local ls -l -d (says to list directory information, not directory contents)-d

docs description

d in position one signifies this is a directory
rwx for allows read, write and "execute" (list for directories)owner
r-x for permits read and "execute" (list)group
--- for means no access allowedeveryone

Copying files between TACC and your laptop

Assume you want to copy the TACC file back to your laptop/local computer. You must $SCRATCH/core_ngs/fastq_prep/small_fastqc.html initiate the
 rather than at TACC. Why? because the TACC servers have host names and IP addresses that are public in copy operation from your local computer

the Internet's () directory. But your local computer (in nearly all cases) does not have a published name and address.Distributed Name Service DNS

First, on the TACC server figure out what the appropriate (a.k.a.) is.absolute path full pathname

Execute this at TACC

cd $SCRATCH/core_ngs/fastq/prep
pwd -P

This will display something like /scratch/01063/abattenh/core_ngs/fastq_prep

For folks with Mac or Linux laptops or Windows 10+ users with available in the program (or Windows subsystem for Linux):scp Command Prompt

Open a window on your local computer Terminal
 cd to the directory where you want the files

Type something like the following, substituting your user name and absolute path:

Execute this on your laptop

scp abattenh@ls6.tacc.utexas.edu:/scratch/01063/abattenh/core_ngs/fastq_prep/small_fastqc.html .

1.
a.

b.

2.

3.

Windows users can use the free WinSCP program () if their Windows version does not support .https://winscp.net/eng/index.php scp

Editing files

There are three main approaches to editing Unix files:

Use a command-line program that lets you enter/edit text in a Terminal window (e.g. , / , nano vi vim emacs)
nano is extremely simple and is a good choice as a first local text editor

warning: has a tendency to break long single lines into multiple linesnano
vi and are powerful but also quite complexemacs extremely

emacs reference sheet: https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf
vi reference sheet: http://www.atmos.albany.edu/daes/atmclasses/atm350/vi_cheat_sheet.pdf

Use a text editor or IDE (Integrated Development Environment) program that runs on your local computer but has an SFTP (secure FTP) interface
that lets you connect to a remote computer

E.g., Komodo IDE (Windows & Mac) or (Windows). Both are no-cost.Notepad++
Once you connect to the remote host, you can navigate its directory structure and edit files.
When you open a file, its contents are brought over the network into the text editor's edit window, then saved back when you save the
file.

Use software or protocols that allow you to "mount" remote server directories
Once mounted, the remote storage appears as a local volume/drive.

Then, you can use any text editor or IDE on your local computer to open/edit/save remote files.
Software programs that can mount remote data include for Windows or Mac (costs $$, but has a free trial), ExpanDrive TextWrangler
for Mac.
Remote file system protocols include (Windows, Mac) and (Linux)Samba NFS

Knowing the basics of at least one Linux command-line text editor is useful for creating/editing small files, and we'll explore in this class. For editing nano
larger files, you may find options #2 or #3 more useful.

nano

 nano is a very simple editor available on most Linux systems. If you are able to into a remote system, you can use there. ssh nano

To invoke to edit a new or existing file just type . For example: nano <filename>nano

Start the nano text editor

nano newfile.txt

You'll see the name of the file (if you supplied one) on the top line of the window.Terminal

Navigation and operations in are similar to those we discussed in nano Command line editing

You can just type in text, and navigate around using (up/down/left/right). A couple of other navigation shortcuts:arrow keys

Ctrl-a - go to start of line
Ctrl-e - go to end of line
Arrow keys are also modified by Ctrl- (Windows) or Option- (Mac)

Ctrl-right-arrow (Windows) or (Mac) will skip by "word" forwardOption-right-arrow
Ctrl-left-arrow (Windows) or (Mac) will skip by "word" backwardOption-left-arrow

Once you've positioned the where you want it, just type in your text.cursor

To remove text:

To delete text the cursor, use: after
Delete key on Windows

 Function-Delete keys on Macintosh
To delete text the cursor, use: before

 Backspace key on Windows
 Delete key on Macintosh

Use (ill) to Ctrl-k k delete everything on the line
This is different from on the command line where it deletes everything after the cursor Ctrl-k

Use (ncut) to the just-killed text at the cursorCtrl-u u paste
Recall this operation is (ank) for command line editingCtrl-y y

Once you're satisfied with your edits:

use Ctrl-o - write ut the fileo

Be careful with long lines – sometimes will split long lines into more than one line, which can cause problems in a commands file where nano
each task must be specified on a single line.

https://winscp.net/eng/index.php
https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf
http://www.atmos.albany.edu/daes/atmclasses/atm350/vi_cheat_sheet.pdf

use Ctrl-x - e it x nano

These and other important are displayed in a menu at the bottom of the Terminal window. Note that the character means in this nano operations ^ Ctrl-
menu.

emacs

 emacs is a complex, full-featured editor available on most Linux systems.

To invoke to edit a new or existing file just type: emacs

Start the emacs text editor

emacs <filename>

Here's a reference sheet that list many commands: . The most important are:https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf

Ctrl-x/Ctrl-s - write out the file
Ctrl-x/Ctrl-c - exit emacs

You can just type in text, and navigate around using arrow keys. A couple of other navigation shortcuts:

Ctrl-a - go to start of line
Ctrl-e - go to end of line

Line ending nightmares

The dirty little secret of the computer world is that the three main "families" of computers – Macs, Windows and Linux/Unix – use different, mutually
incompatible line endings.

Linux/Unix uses () linefeed \n
Windows uses followed by ()carriage return linefeed \r\n
some Mac programs use only ()carriage return \r

And guess what? Most Linux programs don't work with files that have Windows or Mac line endings, and what's worse they give you bizarre error
messages that don't give you a clue what's going on!

So whatever non-Linux text editor you use, be sure to adjust its "line endings" setting – and it better have one somewhere!

Komodo Edit for Mac and Windows

Komodo Edit is a free, full-featured text editor with syntax coloring for many programming languages and a remote file editing interface. It has versions for
both Macintosh and Windows. .Download the appropriate install image here

Once installed, start and follow these steps to configure it:Komodo Edit

Configure the default line separator for Unix
On the menu select Edit Preferences
Select the CategoryNew Files
For select Specify the end-of-line (EOL) indicator for newly created files UNIX (\n)
Select OK

Configure a connection to TACC
On the menu select Edit Preferences
Select the CategoryServers
For select Server type SFTP
Give this profile the of Name lonestar6
For enter Hostname ls6.tacc.utexas.edu
Enter your TACC user ID for Username
Leave and blankPort Default path
Select OK

When you want to open an existing file at , do the following:lonestar6

Select the menu -> -> File Open Remote File
Select your profile from the top drop-down menulonestar6 Server
Once you log in, it should show you all the files and directories in your directorylonestar6 $HOME

Navigate to the file you want and open it

Be careful when pasting text into an buffer – it takes a few seconds before is ready to accept pasted text. emacs emacs

Double-check that the 1st line of pasted test is correct – can clip the 1st few characters if the paste is done too soon. emacs

https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf
http://www.activestate.com/komodo-edit/downloads

Often you will use your or directory links to help you here ~/work ~/scratch

To create and save a new file, do the following:

From the Komodo Edit , select Start Page New File
Select the file type (is good for commands files)Text

Edit the contents
Select the menu -> -> File Save As Other Remote File

Select your profile from the drop-down menulonestar6 Server
Once you log in, it should show you all the files and directories in your directorylonestar6 $HOME

Navigate to where you want the put the file and save it
Often you will use your or directory links to help you here ~/work ~/scratch

Rather than having to navigate around TACC's complex file system tree, it helps to use the symbolic links to those areas that we created in your Home
directory.

Notepad++ for Windows

Notepad++ is an open source, full-featured text editor for Windows PCs (not Macs). It has syntax coloring for many programming languages (, , python perl
), and a remote file editing interface.bash

If you're on a Windows PC .download the installer here

Once it has been installed, start and follow these steps to configure it:Notepad++

Configure the default line separator for Unix
In the menu, select Settings Preferences
In the dialog, select the tab.Preferences New Document/Default Directory
Select in the sectionUnix Format
Close

Configure a connection to TACC
In the menu, select , then select . The top bar of the panel should become blue.Plugins NppFTP Focus NppFTP Window NppFTP
Click the icon (looks like a gear), then select Settings Profile Settings
In the dialog click Profile settings Add new
Call the new profile lonestar6
Fill in () and your TACC user IDHostname ls6.tacc.utexas.edu
Connection type must be SFTP
Close

To open the connection, click the blue icon then select your connection. It should prompt for your password. Once you've (Dis)connect lonestar6
authenticated, a directory tree ending in your directory will be visible in the window. You can click the the icon again to Home NppFTP (Dis)connect
Disconnect when you're done.

Rather than having to navigate around TACC's complex file system tree, it helps to use the symbolic links to those areas that we created in your Home
directory (or). ~/work ~/scratch

Other bash resources

Greg's Bash Guide
The Guide: http://mywiki.wooledge.org/BashGuide
FAQ: http://mywiki.wooledge.org/BashFAQ
Pitfalls: http://mywiki.wooledge.org/BashPitfalls

Ryan's Tutorials on Bash Scripting: http://ryanstutorials.net/bash-scripting-tutorial/
CBRS short course workshop wikis (developed by Anna)

Introduction to Unix: https://wikis.utexas.edu/display/CbrsIntroUnix
Intermediate Unix: https://wikis.utexas.edu/display/CbrsIntermUnix
You won't have access to the small compute cluster they use, but you can download the example files and manipulate them in your own
Linux or Unix environment.

https://notepad-plus-plus.org/downloads/
http://mywiki.wooledge.org/BashGuide
http://mywiki.wooledge.org/BashFAQ
http://mywiki.wooledge.org/BashPitfalls
http://ryanstutorials.net/bash-scripting-tutorial/
https://wikis.utexas.edu/display/CbrsIntroUnix
https://wikis.utexas.edu/display/CbrsIntermUnix

	Linux fundamentals

