
Working with FASTQ files

Setup
Logon and idev
Data staging

Illumina sequence data format (FASTQ)
4-line FASTQ format

About compressed files
gzip and gunzip
head and tail, more or less

head
piping
tail

zcat and gunzip -c tricks
Counting your sequences

How to do math on the command line
A better way to do math
Processing multiple compressed files

Setup

Logon and idev

First login to like you did before. Then start an session so that we don't do too much processing on the login nodes. ls6 idev

Start an idev session

idev -m 120 -N 1 -A OTH21164 -r CoreNGS-Tue
-or-
idev -m 90 -N 1 -A OTH21164 -p development

Data staging

Set ourselves up to process some yeast data data in , using some of best practices for organizing our workflow.$SCRATCH

Set up directory for working with FASTQs

Create a $SCRATCH area to work on data for this course,
with a sub-directory for pre-processing raw fastq files
mkdir -p $SCRATCH/core_ngs/fastq_prep

Make symbolic links to the original yeast data:
cd $SCRATCH/core_ngs/fastq_prep
ln -s -f $CORENGS/yeast_stuff/Sample_Yeast_L005_R1.cat.fastq.gz
ln -s -f $CORENGS/yeast_stuff/Sample_Yeast_L005_R2.cat.fastq.gz

or
ln -s -f ~/CoreNGS/yeast_stuff/Sample_Yeast_L005_R1.cat.fastq.gz
ln -s -f ~/CoreNGS/yeast_stuff/Sample_Yeast_L005_R2.cat.fastq.gz

or
ln -sf /work/projects/BioITeam/projects/courses/Core_NGS_Tools/yeast_stuff/Sample_Yeast_L005_R1.cat.fastq.gz
ln -sf /work/projects/BioITeam/projects/courses/Core_NGS_Tools/yeast_stuff/Sample_Yeast_L005_R2.cat.fastq.gz

Illumina sequence data format (FASTQ)

GSAF gives you paired end sequencing data in two matching format files, containing reads for each end sequenced. See where your data really is FASTQ
and how big it is.

ls options to see the size of linked files

the -l options says "long listing" which shows where the link goes,
but doesn't show details of the real file
ls -l

the -L option says to follow the link to the real file,
-l means long listing (includes size)
-h says "human readable" (e.g. MB, GB)
ls -Llh

4-line FASTQ format

Each read end sequenced is represented by a 4-line entry in the file that looks like this:FASTQ

A four-line FASTQ file entry representing one sequence

@HWI-ST1097:127:C0W5VACXX:5:1101:4820:2124 1:N:0:CTCAGA
TCTCTAGTTTCGATAGATTGCTGATTTGTTTCCTGGTCATTAGTCTCCGTATTTATATTATTATCCTGAGCATCATTGATGGCTGCAGGAGGAGCATTCTC
+
CCCFFFFDHHHHHGGGHIJIJJIHHJJJHHIGHHIJFHGICA91CGIGB?9EF9DDBFCGIGGIIIID>DCHGCEDH@C@DC?3AB?@B;AB??;=A>3;;

Line 1 is the The format for Illumina reads is as follows, using the read name above:unique read name.

: : : :0:machine_id lane flowcell_grid_coordinates end_number failed_qc barcode

: : : :0:@HWI-ST1097:127:C0W5VACXX 5 1101:4820:2124 1 N CTCAGA

The line will be unique for this read fragment. as a whole
the corresponding R1 and R2 reads will have identical information. This common part of : :machine_id lane flowcell_grid_coordinates
the name ties the two read ends together
the information will be different for R1 and R2: :0:end_number failed_qc barcode

Most sequencing facilities will not give you qc-failed reads () unless you ask for them.failed_qc = Y

Line 2 is the reported by the machine, starting with the first base of the insert (the adapter has usually been removed by the sequencing sequence 5'
facility). These are or uppercase characters.ACGT N

Line 3 always starts with ' ' (it can optionally include a sequence description)+

Line 4 is a string of , one character per base in the sequence. Ascii-encoded base quality scores

For each base, an integer -type quality score is calculated as then Phred integer score = -10 log(probabilty base is wrong)
added to 33 to make a number in the .Ascii printable character range
As you can see from the table below, , , (except).alphabetical letters - good numbers – ok most special characters – bad :;<=>?@
See https://www.asciitable.com

See the for more information.Wikipedia FASTQ format page

Exercise: What character in the quality score string in the FASTQ entry above represents the best base quality? Roughly what is the error
probability estimated by the sequencer?

J is the best base quality score character (Q=41)

It represents a probability of error of < 1/10 4 or 1/10,000^

About compressed files

Sequencing data files can be very large - from a few megabytes to gigabytes. And with NGS giving us longer reads and deeper sequencing at decreasing
price points, it's not hard to run out of storage space. As a result, most sequencing facilities will give you sequencing data files. compressed

http://www.asciitable.com/
https://www.asciitable.com/
http://en.wikipedia.org/wiki/FASTQ_format

The most common compression program used for is whose compressed files have the extension. The and programs are individual files gzip .gz tar zip
most commonly used for compressing .directories

Let's take a look at the size difference between uncompressed and compressed files. We use the option of ls to get a ong listing that includes the file -l l
size, and to have that size displayed in " uman readable" form rather than in raw byte sizes.-h h

Compare compressed and uncompressed files

ls -lh $CORENGS/yeast_stuff/*L005*.fastq
ls -lh $CORENGS/yeast_stuff/*L005*.fastq.gz

Exercise: About how big are the compressed files? The uncompressed files? About what is the compression factor?

FASTQ's are ~ 149 MB
Compressed they are ~ 50 MB
This is about 3x compression

You may be tempted to want to un-compress your sequencing files in order to manipulate them more directly – but resist that temptation! Nearly all
modern bioinformatics tools are able to work on files, and there are tools and techniques for working with the contents of compressed files without ever .gz
un-compressing them.

gzip and gunzip

With no options, compresses the file you give it in-place. Once all the content has been compressed, the original uncompressed file is removed, gzip
leaving only the compressed version (the original file name plus a extension). The function works in a similar manner, except that its input is a .gz gunzip
compressed file with a file and produces an uncompressed file without the extension..gz .gz

gzip, gunzip exercise

if the $CORENGS environment variable is not defined
export CORENGS=/work/projects/BioITeam/projects/courses/Core_NGS_Tools

make sure you're in your $SCRATCH/core_ngs/fastq_prep directory
cd $SCRATCH/core_ngs/fastq_prep

Copy over a small, uncompressed fastq file
cp $CORENGS/misc/small.fq .

check the size, then compress it in-place
ls -lh small*
gzip small.fq

check the compressed file size
ls -lh small*

uncompress it again
gunzip small.fq.gz
ls -lh small*

head and tail, more or less

Pathname wildcarding

The asterisk character () is a that matches 0 or more characters.* pathname wildcard

Read more about pathname wildcards: Pathname wildcards

Both and are when run on large files. gzip gunzip extremely I/O intensive

While TACC has tremendous compute resources and its specialized parallel file system is great, it has its limitations. It is not difficult to
overwhelm the TACC file system if you or more than a few files at a time – as few as 5-6! gzip gunzip

The intensity of compression/decompression operations is another reason you should compress your sequencing files once (if they aren't
already) then leave them that way.

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-PathnamewildcardsWildcards

One of the challenges of dealing with large data files, whether compressed or not, is finding your way around the data – finding and looking at relevant
pieces of it. Except for the smallest of files, you can't open them up in a text editor because those programs read the whole file into memory, so will choke
on sequencing data files! Instead we use various techniques to look at pieces of the files at a time. (Read more about commands for Displaying file

)contents

The first technique is the use of – we've already seen this with the command. Review its use now on our small uncompressed file:pagers more

Setup (if needed)
export CORENGS=/work/projects/BioITeam/projects/courses/Core_NGS_Tools
mkdir -p $SCRATCH/core_ngs/fastq_prep
cd $SCRATCH/core_ngs/fastq_prep
cp $CORENGS/misc/small.fq .

Using the more pager

Use spacebar to advance a page; Ctrl-c to exit
more small.fq

Another pager, with additional features, is . The most useful feature of is the ability to search – but it still doesn't load the whole file into memory, less less
so searching a really big file can be slow.

Here's a summary of the most common navigation commands, once the pager is active. It has tons of other options (try).less less less --help

q – quit
Ctrl-f or – page forward space
Ctrl-b – page backward
/<pattern> – search for in direction<pattern> forward

n – next match
N – previous match

?<pattern> – search for in direction<pattern> backward
n – previous match going back
N – next match going forward

If you start with the option, it will display line numbers.less -N

Exercise: What line of contains the read name with grid coordinatessmall.fq ?2316:10009:100563

less -N small.fq
/2316:10009:100563

line number 905, which looks like this:

905 @HWI-ST1097:127:C0W5VACXX:5:2316:10009:100563 1:N:0:CTCAGA

head

For a really quick peek at the first few lines of your data, there's nothing like the command. By default displays the first 10 lines of data from the head head
file you give it or from its . With an argument (that is a dash followed by some number), it will show that many lines of data.standard input -NNN

Setup (if needed)
export CORENGS=/work/projects/BioITeam/projects/courses/Core_NGS_Tools
mkdir -p $SCRATCH/core_ngs/fastq_prep
cd $SCRATCH/core_ngs/fastq_prep
cp $CORENGS/misc/small.fq .

Using the head command

shows 1st 10 lines
head small.fq

shows 1st 100 lines -- might want to pipe this to more to see a bit at a time
head -100 small.fq | more

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Displayingfilecontents
https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Displayingfilecontents

So what if you want to see line numbers on your or output? Neither command seems to have an option to do this.head tail

cat --help

cat -n small.fq | tail

piping

So what is that () all about? It is the !vertical bar | pipe operator

The () connects one program's to the next program's . The power of the Linux command line is due in no pipe operator | standard output standard input
small part to the power of piping. (Read more about and)Piping Standard Unix I/O streams

When you execute the command, starts writing lines of the file to .head - | more100 small.fq head small.fq standard output
Because of the , the output does not go to the , but is connected to the of the command.pipe Terminal standard input more
Instead of reading lines from a file you specify as a command-line argument, obtains its input from . more standard input
The command writes a page of text to , which is displayed on the .more standard output Terminal

tail

The yang to 's ying is , which by default it displays the 10 lines of its data, and also uses the syntax to show the last lines. (Note head tail last -NNN NNN
that with very large files it may take a while for to start producing output because it has to read through the file sequentially to get to the end.)tail

But what's really cool about is its syntax. This displays all the lines starting at line . Note this syntax: the option switch follows by a plus tail -n +NN NN -n
sign () in front of a number – the plus sign is what says "starting at this line"! Try these examples:+

Setup (if needed)
export CORENGS=/work/projects/BioITeam/projects/courses/Core_NGS_Tools
mkdir -p $SCRATCH/core_ngs/fastq_prep
cd $SCRATCH/core_ngs/fastq_prep
cp $CORENGS/misc/small.fq .

Using the tail command

shows the last 10 lines
tail small.fq

shows the last 100 lines -- might want to pipe this to more to see a bit at a time
tail -100 small.fq | more

shows all the lines starting at line 900 -- better pipe it to a pager!
cat -n adds line numbers to its output so we can see where we are in the file
cat -n small.fq | tail -n +900 | more

shows 15 lines starting at line 900 because we pipe to head -15
tail -n +900 small.fq | head -15

Programs often allow input from standard input

Most Linux commands are designed to accept input from in addition to (or instead of) command line arguments so that data can standard input
be .piped in

Many bioinformatics programs also allow data to be piped in. Often they will require you provide a special argument, such as or , to tell stdin -
the program data is coming from instead of a file.standard input

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-pipingPiping
https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Standardstreamsandredirection

zcat and gunzip -c tricks

Ok, now you know how to navigate an un-compressed file using and , or . But what if your file has been compressed by ? head tail more less FASTQ gzip
You don't want to un-compress the file, remember?

So you use the trick. This un-compresses the file, but instead of writing the un-compressed data to another file (without the extension) it gunzip -c .gz
write it to its where it can be piped to programs like your friends and , or .standard output head tail more less

Let's illustrate this using one of the compressed files in your sub-directory:fastq_prep

Setup (if needed)
export CORENGS=/work/projects/BioITeam/projects/courses/Core_NGS_Tools
mkdir -p $SCRATCH/core_ngs/fastq_prep
cd $SCRATCH/core_ngs/fastq_prep
cp $CORENGS/misc/small.fq .

Uncompressing output on the fly with gunzip -c

make sure you're in your $SCRATCH/core_ngs/fastq_prep directory
cd $SCRATCH/core_ngs/fastq_prep

gunzip -c Sample_Yeast_L005_R1.cat.fastq.gz | more
gunzip -c Sample_Yeast_L005_R1.cat.fastq.gz | head
gunzip -c Sample_Yeast_L005_R1.cat.fastq.gz | tail
gunzip -c Sample_Yeast_L005_R1.cat.fastq.gz | tail -n +901 | head -8

Note that less will display .gz file contents automatically
less -N Sample_Yeast_L005_R1.cat.fastq.gz

Finally, another command that does the same thing as is – which is like except that it works on -compressed () files!gunzip -c zcat cat gzip .gz

Counting lines with wc -l

zcat Sample_Yeast_L005_R1.cat.fastq.gz | more
zcat Sample_Yeast_L005_R1.cat.fastq.gz | less -N
zcat Sample_Yeast_L005_R1.cat.fastq.gz | head
zcat Sample_Yeast_L005_R1.cat.fastq.gz | tail
zcat Sample_Yeast_L005_R1.cat.fastq.gz | tail -n +901 | head -8
include original line numbers
zcat Sample_Yeast_L005_R1.cat.fastq.gz | cat -n | tail -n +901 | head -8

Counting your sequences

One of the first thing to check is that your files are the same length, and that length is evenly divisible by 4. The command (ord ount) using FASTQ wc w c
the switch to tell it to count ines, not words, is perfect for this. It's so handy that you'll end up using a to count things. It's especially powerful -l l wc -l lot
when used with filename wild carding.

Setup (if needed)
export CORENGS=/work/projects/BioITeam/projects/courses/Core_NGS_Tools
mkdir -p $SCRATCH/core_ngs/fastq_prep
cd $SCRATCH/core_ngs/fastq_prep
cp $CORENGS/misc/small.fq .

There will be times when you forget to pipe your large output somewhere – even the experienced among us still make this zcat or gunzip -c
mistake! This leads to pages and pages of data spewing across your .Terminal

If you're lucky you can kill the output with . But if that doesn't work (and often it doesn't) just close your window. This terminates Ctrl-c Terminal
the process on the server (like hanging up the phone), then you just can log back in.

Counting lines with wc -l

wc -l small.fq
head -100 small.fq > small2.fq
wc -l small*.fq

You can also pipe the output of to to count lines in your compressed FASTQ file.zcat or gunzip -c wc -l

Exercise: How many lines are in the file? How many sequences is this?Sample_Yeast_L005_R1.cat.fastq.gz

zcat Sample_Yeast_L005_R1.cat.fastq.gz | wc -l

The command says there are 2,368,720 lines. FASTQ files have 4 lines per sequence, so the file has 2,368,720/4 or 592,180 sequences.wc -l

How to do math on the command line

The shell has a really strange syntax for arithmetic: it uses a double-parenthesis operator after the sign (which means evaluate this expression). bash $
Go figure.

Syntax for artithmetic on the command line

echo $((2368720 / 4))

Here's another trick: . When you enclose a command expression in () the enclosed expression is evaluated and backticks evaluation backtick quotes `
its substituted into the string. (Read more about)standard output Quoting in the shell

Here's how you would combine this math expression with line counting on your file using the magic of backtick evaluation. Notice that the zcat wc -l
expression is what is reading from .standard input

Setup (if needed)
export CORENGS=/work/projects/BioITeam/projects/courses/Core_NGS_Tools
mkdir -p $SCRATCH/core_ngs/fastq_prep
cd $SCRATCH/core_ngs/fastq_prep
ln -sf $CORENGS/yeast_stuff/Sample_Yeast_L005_R1.cat.fastq.gz
ln -sf $CORENGS/yeast_stuff/Sample_Yeast_L005_R2.cat.fastq.gz

Counting sequences in a FASTQ file

cd $SCRATCH/core_ngs/fastq_prep
zcat Sample_Yeast_L005_R1.cat.fastq.gz | echo "$((`wc -l` / 4))"

Whew!

A better way to do math

Well, doing math in is pretty awful – there has to be something better. There is! It's called , which is a powerful scripting language that is easily bash awk
invoked from the command line.

In the code below we pipe the output from (number of lines in the file) to , which executes its (the statements between the curly wc -l FASTQ awk body
braces () for each line of input. Here the input is just one line, with one field – the line count. The body just divides the 1st input field () by 4 and { } awk $1
writes the result to . (Read more about in)standard output awk Advanced commands: awk

bash arithmetic is integer valued only

Note that arithmetic in the shell is integer valued only, so don't use it for anything that requires decimal places! bash

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Quotingintheshellshell_quoting
lhttps://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#AWK_script

Setup (if needed)
export CORENGS=/work/projects/BioITeam/projects/courses/Core_NGS_Tools
mkdir -p $SCRATCH/core_ngs/fastq_prep
cd $SCRATCH/core_ngs/fastq_prep
ln -sf $CORENGS/yeast_stuff/Sample_Yeast_L005_R1.cat.fastq.gz
ln -sf $CORENGS/yeast_stuff/Sample_Yeast_L005_R2.cat.fastq.gz

Counting FASTQ sequences with awk

cd $SCRATCH/core_ngs/fastq_prep
zcat Sample_Yeast_L005_R1.cat.fastq.gz | wc -l | awk '{print $1 / 4}'

Note that means something different in – the 1st -delimited input field – than it does in , where it represents the 1st argument to a $1 awk whitespace bash
script or function (technically, the environment variable). This is an example of where a - the () here – has a different 1 metacharacter dollar sign $
meaning for two different programs.

The shell treats () as an , so will normally attempt to evaluate the environment variable name following the and bash dollar sign $ evaluation operator $
substitute its value in the output (e.g.). But we don't want that evaluation to be applied to the script argument passed to echo $SCRATCH {print $1 / }4 awk
; instead we want to see the literal string as its script. To achieve this result we surround the script argument with (), awk {print $1 / }4 single quotes ' '
which tells the shell to treat everything enclosed by the quotes as , and not perform any .literal text metacharacter evaluation

(Read more about)Quoting in the shell

Processing multiple compressed files

You've probably figured out by now that you can't easily use filename wildcarding along with and piping to process multiple files. For this, you need to zcat
code a loop in . Fortunately, this is pretty easy. Try this: for bash

For loop to count sequences in multiple FASTQs

cd $SCRATCH/core_ngs/fastq_prep
for fname in *.gz; do
 echo "Processing $fname"
 echo "..$fname has `zcat $fname | wc -l | awk '{print $1 / 4}'` sequences"
done

Each time through the loop, the next item in the (here the files matching the) is assigned to the loop's for argument list wildcard glob .gz* for formal
 (here the variable). The actual filename is then referenced as inside the loop. (Read more about)argument fname $fname Bash control flow

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Literalcharactersandmetacharacters
https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Quotingintheshell
https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Bashcontrolflow

	Working with FASTQ files

