
Running batch jobs at TACC

Compute cluster overview
Lonestar6 and Stampede2 overview and comparison

About cores and hyperthreads
Software at TACC

Programs and your $PATH
The module system

TACC BioContainers modules
loading a biocontainer module
installing custom software

Job Execution
SLURM at a glance
Simple example
Job parameters

launcher_creator.py
job name and commands file
queues and runtime
allocation and SUs
wayness (tasks per node)

Wayness example
Some best practices

Redirect task output and error streams
Combine serial workflows into scripts
Use one directory per job

Interactive sessions (idev)

Compute cluster overview

When you SSH into , your session is assigned to one of a small set of (also called). These are separate from thels6 login nodes head nodes cluster
 that will run your jobs.compute nodes

Think of a node as a computer, like your laptop, but probably with more cores and memory. Now multiply that computer a thousand or more, and you have
a cluster.

The small set of login nodes are a shared resource (type the command to see everyone currently logged in) and are meant for running users not
interactive programs – for that you submit a description of what you want done to a , which distributes the work to one or more compute batch system
nodes.

On the other hand, the login nodes intended for copying files to and from TACC, so they have of network bandwidth while compute nodes have are a lot
limited network bandwidth.

Reservations

Use our summer school () when submitting batch jobs to get higher priority on the normal queue :reservation CoreNGS-Tue ls6 today

sbatch --reservation= <batch_file>.slurmCoreNGS-Tue
idev -m 180 -N 1 -A OTH21164 -r CoreNGS-Tue

Note that the reservation name () is different from the TACC allocation/project for this class, which is .CoreNGS-Tue OTH21164

So follow these guidelines:

Do not perform substantial computation on the login nodes.
They are closely monitored, and you will get warnings from the TACC admin folks!
Code is usually developed and tested somewhere other than TACC, and only moved over when pretty solid.

Do not perform significant network access from your batch jobs.
Instead, node onto $SCRATCH before submitting your job. loginstage your data from a

Lonestar6 and Stampede2 overview and comparison

Here is a comparison of the configurations and and . As you can see, is the larger cluster, launched in 2017, but , launched ls6 stampede2 stampede2 ls6
om 2022, has fewer but more powerful nodes.

ls6 stampede2

login nodes 3

128 cores each
256 GB memory

6

28 cores each
128 GB memory

standard compute nodes 560 AMD Epyc Milan processors

128 cores per node
256 GB memory

4,200 KNL (Knights Landing) processors

68 cores per node (272 virtual)
96 GB memory

1,736 SKX (Skylake) processors

48 cores per node (96 virtual)
192 GB memory

GPU nodes 16 AMD Epyc Milan processors

128 cores per nod
256 GB memory

2x NVIDIA A100 GPUs
w/ 40GB RAM onboard

--

batch system SLURM SLURM

maximum job run time 48 hours, normal queue

2 hours, development queue

96 hours on KNL nodes, normal queue

48 hours on SKX nodes, normal queue

2 hours, development queue

User guides for and can be found at: ls6 stampede2

https://portal.tacc.utexas.edu/user-guides/lonestar6
https://portal.tacc.utexas.edu/user-guides/stampede2

Unfortunately, the TACC user guides are aimed towards a different user community – the weather modelers and aerodynamic flow simulators who need
very fast matrix manipulation and other High Performance Computing (HPC) features. The usage patterns for bioinformatics – generally running 3rd party
tools on many different datasets – is rather a special case for HPC. TACC calls our type of processing " " and has a special process parameter sweep jobs
for running them, using their module. launcher

About cores and hyperthreads

Note the use of the term on . Compute are standalone processors – mini CPUs, each of which can execute separate sets of virtual core stampede2 cores
instructions. However modern cores may also have enabled, where a single core can as more than one virtual processor to the hyperthreading appear
operating system (see). For example, nodes have 2 or 4 () per core. So KNL https://en.wikipedia.org/wiki/Hyper-threading stampede2 hyperthreads HTs
nodes with 4 HTs for each of the 68 physical cores, have a total of 272 .virtual cores

Threading is an operating system scheduling mechanism for allowing one CPU/core to execute multiple computations, in parallel. seemingly

The writer of a program that takes advantage of threading first identifies portions of code that can run in parallel because the computations are independent
. The programmer assigns some number of threads to that work (usually based on a command-line option) using specific thread and synchronization
programming language constructs. An example is the the option to specify threads can be used for sorting independent sets of the samtools sort -@ N N
input alignments.

If there are multiple cores/CPUs available, the operating system can assign a program thread to each of them for actual parallelism. But only "seeming" (or
virtual) parallelism occurs if there are fewer cores than the number of threads specified.

https://portal.tacc.utexas.edu/user-guides/lonestar6
https://portal.tacc.utexas.edu/user-guides/stampede2
https://en.wikipedia.org/wiki/Hyper-threading

Suppose there's only one core/CPU. The OS assigns program thread A to the core to run until the program performs an I/O operation that causes it to be
"suspended" for the I/O operation to complete. During this time, when normally the CPU would be doing nothing but waiting on the I/O to complete, the OS
assigns program thread B to the CPU and lets it do some work. This allows more efficient use of existing cores as long as the multiple program threading
threads being assigned do some amount of I/O or other operations that cause them to suspend. But trying to run multiple compute-only, no-I/O programs
using multiple threads on one CPU just causes " " -- OS scheduler overhead when threads are suspended for time, not just I/O.thread thrashing

The analogy is a grocery store where there are 5 customers (threads). If there are 5 checkout lines (cores), each customer (thread) can be serviced in a
separate checkout line (core). But if there's only one checkout line (core) open, the customers (threads) will have to wait in line. To be a more accurate
analogy, any checkout clerk would be able to handle some part of checkout for each customer, then while waiting for the customer to find and enter credit
card information, the clerk could handle a part of a different customer's checkout.

Hyperthreading is just a hardware implementation of OS scheduling. Each CPU offers some number of "virtual cores" () that can "almost" hyperthreads
act like separate cores using various hardware tricks. Still, if the work assigned to multiple hyperthreads on a single core does not pause from time to time,

 will occur.thread thrashing

Software at TACC

Programs and your $PATH

When you type in the name of an arbitrary program (for example), how does the shell know where to find that program? The answer is your . ls $PATH $PA
 is a predefined environment variable whose value is a list of directories.The shell looks for program names in that list, in the order the directories TH

appear.

To determine where the shell will find a particular program, use the command. Note that tells you where it looked if it cannot find the program. which which

Using which to search $PATH

which rsync
which cat

which bwa # not yet available to you

The module system

The system is an incredibly powerful way to have literally thousands of software packages available, some of which are incompatible with each module
other, without causing complete havoc. The TACC staff stages packages in well-known locations that are NOT on your . Then, when a module is $PATH
loaded, its binaries are added to your .$PATH

For example, the following command makes the container management system available to you:module load singularity

How module load affects $PATH

first type "singularity" to show that it is not present in your environment:
singularity
it's not on your $PATH either:
which singularity

now add biocontainers to your environment and try again:
module load biocontainers
and see how singularity is now on your $PATH:
which singularity
you can see the new directory at the front of $PATH
echo $PATH

to remove it, use "unload"
module unload biocontainers
singularity
gone from $PATH again...
which singularity

TACC BioContainers modules

It is quite a large systems administration task to install software at TACC and configure it for the module system. As a result, TACC was always behind in
making important bioinformatics software available. To address this problem, TACC moved to providing bioinformatics software via , which are containers v

 like and , but are lighter weight: they require less disk space because they rely more on the host's base Linux irtual machines VMware Virtual Box
environment. Specifically, TACC (and many other igh erformance omputing clusters) use containers, which are similar to containeH P C Singularity Docker
rs but are more suited to the HPC environment (in fact one can build a container then easily convert it to for use at TACC). Docker Singularity

TACC obtains its containers from (and), a large public repository of BioContainers https://biocontainers.pro/ https://github.com/BioContainers/containers
bioinformatics tool containers. This has allowed TACC to easily provision thousands of such tools! Singularity

These are not visible in TACC's "standard" module system, but only after the master module is loaded. Once it has been BioContainers biocontainers
loaded, you can search for your favorite bioinformatics program using .module spider

Verify that samtools is not available
samtools
and cannot be found in the standard module system
module spider samtools

Load the BioContainers master module (this takes a while)
module load biocontainers

Now look for these programs
module spider samtools
module spider Rstats
module spider kallisto
module spider bowtie2
module spider minimap2
module spider multiqc
module spider gatk
module spider velvet

Notice how the module names have " " in their names, version numbers, and other identifying information.BioContainers ctr

loading a biocontainer module

Once the module has been loaded, you can just the desired tool, as with the pseudo-aligner program below. biocontainers module load kallisto

Load the Biocontainers master module
module load biocontainers

Verify kallisto is not yet available
kallisto

Load the default kallisto biocontainer
module load kallisto

Verify kallisto is not available (although not on login nodes)
kallisto

Note that loading a does not add anything to your . Instead, it defines an , which is just a shortcut for executing the command. BioContainer $PATH alias
You can see the definition using the command. And you can ensure the program is available using the utility. alias type command -v

Note that kallisto has not been added to your $PATH, but instead has an alias
which kallisto

Ensure kallisto is available with command -v
command -v kallisto

installing custom software

Even with all the tools available at TACC, inevitably you'll need something they don't have. In this case you can build the tool yourself and install it in a
local TACC directory. While building 3rd party tools is beyond the scope of this course, it's really not that hard. The trick is keeping it all organized.

For one thing, remember that your directory quota is fairly small (10 GB on), and that can fill up quickly if you install many programs. We $HOME ls6
recommend creating an installation area in your directory and installing programs there. You can then make symbolic links to the binaries you $WORK
need in your directory (which was added to your in your).~/local/bin $PATH .bashrc

The standard TACC module system has been phased out for bioinformatics programs, so always look for your application in .BioContainers

While it's great that there are now hundreds of programs available through , the one drawback is that they can only be run on BioContainers
cluster compute nodes, not on login nodes. To test program interactively, you will need to use TACC's command to obtain BioContainer idev
an interactive cluster node. More on this shortly...

https://biocontainers.pro/
https://github.com/BioContainers/containers

1.
2.

1.
2.
3.
4.
5.

6.
a.
b.
c.

See how we used a similar trick to make the program available to you. Using the option shows you where symbolic links point to:launcher_creator.py ls -l

Real location of launcher_creator.py

ls -l ~/local/bin

this will tell you the real location of the launcher_creator.py script is
/work/projects/BioITeam/common/bin/launcher_creator.py

Job Execution

Job execution is controlled by the batch system on both and .SLURM stampede2 ls6

To run a job you prepare 2 files:

a ()commands file file containing the commands to run, one task per line <job_name>.cmds
a job control file () that describes how to run the job <job_name>.slurm

The process of running the job involves these steps:

Create a containing .commands file exactly one task per line
Prepare a for the commands file that describes how the job should be run.job control file
You the to the . The job is then said to be to run. submit job control file batch system queued
The batch system the job based on the number of compute nodes needed and the job run time requested. prioritizes
When compute nodes become available, the job tasks (command lines in the file) are to one or more compute <job_name>.cmds assigned
nodes and in parallel.begin to run
The job when either: completes

you the job manuallycancel
all job tasks complete (successfully or not!)
the requested job run time has expired

SLURM at a glance

Here are the main components of the batch system.SLURM

stampede2, ls5

batch system SLURM

batch control file name <job_name>.slurm

job submission command sbatch <job_name>.slurm

job monitoring command showq -u

job stop command <job name>scancel -n

Simple example

Let's go through a simple example. Execute the following commands to copy a pre-made commands file:simple.cmds

Copy simple commands

mkdir -p $SCRATCH/core_ngs/slurm/simple
cd $SCRATCH/core_ngs/slurm/simple
cp $CORENGS/tacc/simple.cmds .

What are the tasks we want to do? Each task corresponds to one line in the commands file, so let's take a look at it using the (con enatsimple.cmds cat cat
e) command that simply reads a file and writes each line of content to (here, your):standard output Terminal

$PATH caveat

Remember that the order of locations in the environment variable is the order in which the locations will be searched.$PATH

View simple commands

cat simple.cmds

The tasks we want to perform look like this:

simple.cmds commands file

sleep 5; echo "Command 1 on `hostname` - `date`" > cmd1.log 2>&1
sleep 5; echo "Command 2 on `hostname` - `date`" > cmd2.log 2>&1
sleep 5; echo "Command 3 on `hostname` - `date`" > cmd3.log 2>&1
sleep 5; echo "Command 4 on `hostname` - `date`" > cmd4.log 2>&1
sleep 5; echo "Command 5 on `hostname` - `date`" > cmd5.log 2>&1
sleep 5; echo "Command 6 on `hostname` - `date`" > cmd6.log 2>&1
sleep 5; echo "Command 7 on `hostname` - `date`" > cmd7.log 2>&1
sleep 5; echo "Command 8 on `hostname` - `date`" > cmd8.log 2>&1

There are 8 tasks. Each task sleeps for 5 seconds, then uses the command to output a string containing the task number and date to a log file echo
named for the task number. Notice that we can put two commands on one line if they are separated by a semicolon ().;

Use the handy program to create the job control file.launcher_creator.py

Create batch submission script for simple commands

launcher_creator.py -j simple.cmds -n simple -t 00:01:00 -a OTH21164 -q development

You should see output something like the following, and you should see a batch submission file in the current directory.simple.slurm

Project simple.
Using job file simple.cmds.
Using development queue.
For 00:01:00 time.
Using OTH21164 allocation.
Not sending start/stop email.
Launcher successfully created. Type "sbatch simple.slurm" to queue your job.

Submit your batch job then check the batch queue to see the job's status.

Submit simple job to batch queue

sbatch simple.slurm
showq -u

Output looks something like this:

 Welcome to the Lonestar6 Supercomputer

--> Verifying valid submit host (login1)...OK
--> Verifying valid jobname...OK
--> Verifying valid ssh keys...OK
--> Verifying access to desired queue (normal)...OK
--> Checking available allocation (OTH21164)...OK
Submitted batch job 232542

The queue status will show your job as while its running, or if not.ACTIVE WAITING

SUMMARY OF JOBS FOR USER: <abattenh>

ACTIVE JOBS--------------------
JOBID JOBNAME USERNAME STATE NODES REMAINING STARTTIME
==
924965 simple abattenh Running 1 0:00:42 Sat Jun 3 21:33:31

WAITING JOBS------------------------
JOBID JOBNAME USERNAME STATE NODES WCLIMIT QUEUETIME
==

Total Jobs: 1 Active Jobs: 1 Idle Jobs: 0 Blocked Jobs: 0

If you don't see your job in either the or sections of your queue, it probably already finished – it should only run for a few simple ACTIVE WAITING
seconds!

Notice in my queue status, where the is , there is only one node assigned. Why is this, since there were 8 tasks?STATE Running

Every job, no matter how few tasks requested, will be assigned at least one node. Each node has 128 physical cores, so each of the 8 tasks can lonestar6
be assigned to a different core.

Exercise: What files were created by your job?

ls should show you something like this:

cmd1.log cmd3.log cmd5.log cmd7.log simple.cmds simple.o924965
cmd2.log cmd4.log cmd6.log cmd8.log simple.e924965 simple.slurm

The newly created files are the files, as well as error and output logs and ..log simple.e924965 simple.o924965

filename wildcarding

You can look at one of the output log files like this:

cat cmd1.log

But here's a cute trick for viewing the contents all your output files at once, using the command and filename . cat wildcarding

Multi-character filename wildcarding

cat cmd*.log

The command can take a list of one or more files. The () in is a that matches any filename starting with cat asterisk * cmd .log* multi-character wildcard
 then ending with .cmd .log

You can also specify inside brackets () in either of the ways below, this time using the command so you can better see single-character matches [] ls
what is matching:

Single character filename wildcarding

ls cmd[1234].log
ls cmd[2-6].log

This technique is sometimes called , and the pattern a . Don't ask me why – it's a Unix thing. – translating a glob pattern filename globbing glob Globbing
into a list of files – is one of the handy thing the shell does for you. (Read more about) bash Pathname wildcards

Exercise: How would you list all files starting with "simple"?

ls simple*

Here's what my output looks like. Notice the times are all nearly the same because all the tasks ran in parallel. That's the power of cluster computing! cat

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-PathnamewildcardsWildcards

Command 1 on c304-005.ls6.tacc.utexas.edu - Sat Jun 3 21:33:50 CDT 2023
Command 2 on c304-005.ls6.tacc.utexas.edu - Sat Jun 3 21:33:44 CDT 2023
Command 3 on c304-005.ls6.tacc.utexas.edu - Sat Jun 3 21:33:46 CDT 2023
Command 4 on c304-005.ls6.tacc.utexas.edu - Sat Jun 3 21:33:47 CDT 2023
Command 5 on c304-005.ls6.tacc.utexas.edu - Sat Jun 3 21:33:51 CDT 2023
Command 6 on c304-005.ls6.tacc.utexas.edu - Sat Jun 3 21:33:47 CDT 2023
Command 7 on c304-005.ls6.tacc.utexas.edu - Sat Jun 3 21:33:51 CDT 2023
Command 8 on c304-005.ls6.tacc.utexas.edu - Sat Jun 3 21:33:49 CDT 2023

echo

Lets take a closer look at a typical task in the file.simple.cmds

A simple.cmds task line

sleep 5; echo "Command 3 `date`" > cmd3.log 2>&1

The command is like a print statement in the shell. takes its arguments and writes them to . While not always required, echo bash echo standard output
it is a good idea to put 's output string in double quotes.echo

backtick evaluation

So what is this funny looking bit doing? Well, is just another Linux command (try just typing it in) that just displays the current date and time. `date` date
Here we don't want the shell to put the string "date" in the output, we want it to the command and put the text into the output. The execute date result bac

(also called) around the command tell the shell we want that command executed and its substituted into the kquotes ` ` backticks date standard output
string. (Read more about .)Quoting in the shell

Backtick evaluation

These are equivalent:
date
echo `date`

But different from this:
echo date

output redirection

There's still more to learn from one of our simple tasks, something called .output redirection

Every command and Unix program has three "built-in" streams: , and , each with a name, a number, and standard input standard output standard error
a syntax.redirection

Normally writes its string to , but it could encounter an error and write an error message to . We want both echo standard output standard error standard
 and for each task stored in a log file named for the command number.output standard error

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Quotingintheshell

A simple.cmds task line

sleep 5; echo "Command 3 `date`" > cmd3.log 2>&1

So in the above example the first ' ' says to redirect the of the command to the file. The ' ' part says to redirect > standard output echo cmd3.log 2>&1 stan
 to the same place. Technically, it says to redirect (built-in Linux stream) to the same place as (built-in Linux dard error standard error 2 standard output

stream); and since is going to , any will go there also. (Read more about)1 standard output cmd3.log standard error Standard streams and redirection

When the TACC batch system runs a job, all outputs generated by tasks in the batch job are directed to one output and error file per job. Here they have
names like . contains all and contains all simple.e924965 and simple.o924965 simple.o924965 standard output simple.o924965 standard error
generated by your tasks that was not redirected elsewhere, as well as information relating to running your job and its tasks. For large jobs with complex
tasks, it is not easy to troubleshoot execution problems using these files.

So a best practice is to of all our tasks into individual log files, one per task, as we do here. Why is this important? Suppose we run separate the outputs
a job with 100 commands, each one a whole pipeline (alignment, for example). 88 finish fine but 12 do not. Just try figuring out which ones had the errors,
and where the errors occurred, if all the is in one intermingled file and all in the other intermingled file!standard output standard error

Job parameters

Now that we've executed a really simple job, let's take a look at some important job submission parameters. These correspond to arguments to the launch
script. er_creator.py

A bit of background. Historically, TACC was set up to cater to researchers writing their own or codes highly optimized to exploit parallelism (the C Fortran
HPC crowd). Much of TACC's documentation is aimed at this audience, which makes it difficult to pick out the important parts for us.

The kind of jobs we biologists generally run are relatively new to TACC. They even have a special name for them: " ", by which they parametric sweeps
mean the running on sets.same program different data

In fact there is a special software module required to run our jobs, called the module. You don't need to worry about activating the launcher launcher
module – that's done by the script created by like this:<job_name>.slurm launcher_creator.py

module load launcher

The module knows how to interpret various job parameters in the batch submission script and use them to create launcher <job_name>.slurm SLURM
your job and assign its tasks to compute nodes. Our program is a simple script that lets you specify job parameters and launcher_ .pycreator Python
writes out a valid submission script.<job_name>.slurm

launcher_creator.py

If you call with no arguments it gives you its usage description. Because it is a long help message, we may want to pipe the output to launcher_ .pycreator
, a that displays one screen of text at a time. Type the to advance to the next page, and to exit from .more pager spacebar Ctrl-c more

Get usage information for launcher_creator.py

Use spacebar to page forward; Ctrl-c to exit
launcher_creator.py | more

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Standardstreamsandredirection

launcher_creator.py usage

usage: launcher_creator.py [-h] -n NAME -t TIME_REQUEST [-j JOB_FILE]
 [-b SHELL_COMMANDS] [-B SHELL_COMMANDS_FILE]
 [-q QUEUE] [-a [ALLOCATION]] [-m MODULES]
 [-M MODULES_FILE] [-w WAYNESS] [-N NUM_NODES]
 [-e [EMAIL]] [-l LAUNCHER] [-s]

Create launchers for TACC clusters. Report problems to rt-
other@ccbb.utexas.edu

optional arguments:
 -h, --help show this help message and exit

Required:
 -n NAME, --name NAME The name of your job.
 -t TIME_REQUEST, --time TIME_REQUEST
 The time you want to give to your job. Format:
 hh:mm:ss

Commands:
 You must use at least one of these options to submit your commands for TACC.

 -j JOB_FILE, --jobs JOB_FILE
 The name of the job file containing your commands.
 -b SHELL_COMMANDS, --bash SHELL_COMMANDS
 A string of shell (Bash, zsh, etc) commands that are
 executed before any parametric jobs are launched.
 -B SHELL_COMMANDS_FILE, --bash_file SHELL_COMMANDS_FILE
 A file containing shell (Bash, zsh, etc) commands that
 are executed before any parametric jobs are launched.

Optional:
 -q QUEUE, --queue QUEUE
 The TACC allocation for job submission.
 Default="development"
 -a [ALLOCATION], -A [ALLOCATION], --allocation [ALLOCATION]
 The TACC allocation for job submission. You can set a
 default ALLOCATION environment variable.
 -m MODULES, --modules MODULES
 A list of module commands. The "launcher" module is
 always automatically included. Example: -m "module
 swap intel gcc; module load bedtools"
 -M MODULES_FILE, --modules_file MODULES_FILE
 A file containing module commands.
 -w WAYNESS, --wayness WAYNESS
 Wayness: the number of commands you want to give each
 node. The default is the number of cores per node.
 -N NUM_NODES, --num_nodes NUM_NODES
 Number of nodes to request. You probably don't need
 this option. Use wayness instead. You ONLY need it if
 you want to run a job list that isn't defined at the
 time you submit the launcher.
 -e [EMAIL], --email [EMAIL]
 Your email address if you want to receive an email
 from Lonestar when your job starts and ends. Without
 an argument, it will use a default EMAIL_ADDRESS
 environment variable.
 -l LAUNCHER, --launcher_name LAUNCHER
 The name of the launcher script that will be created.
 Default="<name>.slurm"
 -s Echoes the launcher filename to stdout.

job name and commands file

Recall how the batch file was created:simple.slurm

Create batch submission script for simple commands

launcher_creator.py -j simple.cmds -n simple -t 00:01:00 -a OTH21164 -q development

The name of your is given with the option.commands file -j simple.cmds
Your desired is given with the option. job name -n simple

The (here) is the you will see in your queue.<job_name> simple job name
By default a corresponding batch file is created for you.<job_name>.slurm

It contains the name of the commands file that the batch system will execute.

queues and runtime

TACC resources are partitioned into : a named set of compute nodes with different characteristics. The main ones on are listed below. queues ls6
Generally you use () when you are writing and testing your code, then once you're sure your commands will development -q development normal
execute properly.

queue name maximum runtime purpose

development 2 hrs development/testing and short jobs (typically has short queue wait times)

normal 48 hrs normal jobs (queue waits are often long)

In , the queue is specified by the argument. launcher_ .pycreator -q
The default queue is . Specify for queue jobs.development -q normal normal

The you are requesting for your job is specified by the argument.maximum runtime -t
Format is hh:mm:ss
Note that your job will be terminated at the end of its time limit!without warning

allocation and SUs

You may be a member of a number of different projects, hence have a choice which resource to run your job under.allocation

You specify that allocation name with the argument of .-a launcher_creator.py
If you have set an environment variable to an allocation name, that allocation will be used.$ALLOCATION

The login script you've installed for this course specifies the class's allocation as shown below. Note that this allocation will expire after the course, .bashrc
so you should change that setting appropriately at some point.

ALLOCATION setting in .bashrc

This sets the default project allocation for launcher_creator.py
export ALLOCATION=OTH21164

When you run a batch job, your project allocation gets "charged" for the time your job runs, in the currency of ().sSU System Units
SUs are related in some way to node hours, usually 1 SU = 1 node hour.

The script does not handle every job control parameter you might ever want to set. For that, make a copy of the default launcher_creator.py
script, found at , and edit it appropriately.$LAUNCHER_DIR/extras/batch-scripts/launcher.slurm

To read more about the module:launcher

module load launcher
module help launcher
more $LAUNCHER_DIR/README.md

wayness (tasks per node)

One of the most confusing things in job submission is the parameter called , which controls .wayness how many tasks are run on each compute node

Recall that there are 128 physical cores and 256 GB of memory on each compute node
so theoretically you could run up to 128 commands on a node, each with ~2 GB available memory
you usually run fewer tasks on a node, and when you do, each task gets more resources

tasks per node (wayness) cores available to each task memory available to each task

1 128 ~256 GB

2 64 ~128 GB

4 32 ~64 GB

8 16 ~32 GB

16 8 ~16 GB

32 4 ~8 GB

64 2 ~4 GB

128 1 ~1 GB

In , is specified by the argument. launcher_creator.py wayness -w
the default is 128 (one task per core)

 A special case is when you have only 1 command in your job.
In that case, it doesn't matter what you request.wayness
Your job will run on one compute node, and have all cores available.

Your choice of the parameter will depend on the nature of the work you are performing: its computational intensity, its memory requirements and wayness
its ability to take advantage of multi-processing/multi-threading (e.g. option or option). bwa -t hisat2 -p

Wayness example

Let's use to explore options. First copy over the commands file:launcher_creator.py wayness wayness.cmds

Copy wayness commands

If $CORENGS is not defined:
export CORENGS=/work/projects/BioITeam/projects/courses/Core_NGS_Tools

cds
mkdir -p core_ngs/slurm/wayness
cd core_ngs/slurm/wayness
cp $CORENGS/tacc/wayness.cmds .

Exercise: How many tasks are specified in the wayness.cmds file?

wc --help
Find the number of lines in the commands file using the (ord ount) command with the (ines) option:wayness.cmds wc w c -l l

wc -l wayness.cmds

Jobs tasks should have similar expected runtimes

Jobs should consist of tasks that will run for approximately the same length of time. This is because the total node hours for your job is
calculated as the run time for your task (the one that finishes last).longest running

For example, if you specify 100 commands and 99 finish in 2 seconds but one runs for 24 hours, you'll be charged for 100 x 24 node hours even
though the total amount of work performed was only ~24 hours.

Bioinformatics programs generally perform substantial I/O, require more memory and fewer cores, so you'll generally want to run only a few
tasks per node.

The file has 16 lines, representing 16 tasks.

The commands file consists of a number of identical lines that look like this:wayness.cmds

sleep 3; echo "Command $LAUNCHER_JID of $LAUNCHER_NJOBS ($LAUNCHER_PPN per node) ran on node `hostname` core
$LAUNCHER_TSK_ID" > cmd.$LAUNCHER_JID.log 2>&1

The commands take advantage of a number of environment variables the module system sets automatically for each task: wayness launcher

$LAUNCHER_JID – the task number of the running task (from 1 to total number of tasks)
$LAUNCHER_NJOBS– total number of tasks specified by the job
$LAUNCHER_TSK_ID – number of the core running the task (0 to number of tasks - 1)

 hostname – Linux program that returns the name of the current compute node

For more information, see https://github.com/TACC/launcher

Create the batch submission script specifying a of 4 (4 tasks per node), then submit the job and monitor the queue: wayness

Create batch submission script for wayness example

launcher_creator.py -j wayness.cmds -n wayness -w 4 -t 00:02:00 -a OTH21164 -q development
sbatch wayness.slurm
showq -u

Exercise: With 16 tasks requested and of 4, how many nodes will this job require? How much memory will be available for each task?wayness

4 nodes (16 tasks x 1 node/4 tasks)
64 GB (256 GB/node * 1 node/4 tasks)

 Exercise: If you specified a of 2, how many nodes would this job require? How much memory could each task use?wayness

8 nodes (16 tasks x 1 node/2 tasks)
128 GB (256 GB/node * 1 node/2 tasks)

Look at the output file contents once the job is done.

cat cmd*log

or, for a listing ordered by node name (the 11th field)
cat cmd*log | sort -k 11,11

The () above is the , which connects one program's to the next program's .vertical bar | pipe operator standard output standard input

(Read more about the command at , and more about)sort Linux fundamentals: cut, sort, uniq Piping

You should see something like output below.

https://github.com/TACC/launcher
https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-cut,sort,uniq
https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Piping

Command 1 of 16 (4 per node) ran on node c303-005.ls6.tacc.utexas.edu core 0
Command 10 of 16 (4 per node) ran on node c304-005.ls6.tacc.utexas.edu core 9
Command 11 of 16 (4 per node) ran on node c304-005.ls6.tacc.utexas.edu core 10
Command 12 of 16 (4 per node) ran on node c304-005.ls6.tacc.utexas.edu core 11
Command 13 of 16 (4 per node) ran on node c304-006.ls6.tacc.utexas.edu core 12
Command 14 of 16 (4 per node) ran on node c304-006.ls6.tacc.utexas.edu core 13
Command 15 of 16 (4 per node) ran on node c304-006.ls6.tacc.utexas.edu core 14
Command 16 of 16 (4 per node) ran on node c304-006.ls6.tacc.utexas.edu core 15
Command 2 of 16 (4 per node) ran on node c303-005.ls6.tacc.utexas.edu core 1
Command 3 of 16 (4 per node) ran on node c303-005.ls6.tacc.utexas.edu core 2
Command 4 of 16 (4 per node) ran on node c303-005.ls6.tacc.utexas.edu core 3
Command 5 of 16 (4 per node) ran on node c303-006.ls6.tacc.utexas.edu core 4
Command 6 of 16 (4 per node) ran on node c303-006.ls6.tacc.utexas.edu core 5
Command 7 of 16 (4 per node) ran on node c303-006.ls6.tacc.utexas.edu core 6
Command 8 of 16 (4 per node) ran on node c303-006.ls6.tacc.utexas.edu core 7
Command 9 of 16 (4 per node) ran on node c304-005.ls6.tacc.utexas.edu core 8

Notice that there are 4 different host names. This expression:

cat cmd*log | awk '{print $11}' | sort | uniq -c

should produce output something like this (read more about)piping commands to make a histogram

 4 c302-005.ls6.tacc.utexas.edu
 4 c302-006.ls6.tacc.utexas.edu
 4 c305-005.ls6.tacc.utexas.edu
 4 c305-006.ls6.tacc.utexas.edu

Some best practices

Redirect task output and error streams

We've already touched on the need to redirect and for each task. Just remember that funny redirection syntax:standard output standard error

Redirect both standard output and standard error to a file

my_program input_file1 output_file1 > file1.log 2>&1

Combine serial workflows into scripts

Another really good way to work is to "bundle" a complex set of steps into a shell script that sets up its own environment, loads its own modules, then
executes a series of program steps. You can then just call that script, probably with data-specific arguments, in your commands file. This multi-program
script is sometimes termed a , pipeline although complex pipelines may involve several such scripts.

For example, you might have a script called (a script) or (written in) that performs multiple steps needed align_bwa.sh bash align_bowtie2.py Python
during the alignment process:

quality checking the input fileFASTQ
trimming or removing adapters from the sequences
performing the alignment step(s) to create a fileBAM
sort the fileBAM
index the fileBAM
gather alignment statistics from the fileBAM

The BioITeam maintains a set of such scripts in the directory. Take a look at some of them after you feel more /work/projects/BioITeam/common/script
comfortable with initial NGS processing steps. They can be executed by anyone with a TACC account.

Use one directory per job

You may have noticed that all the files involved in our job were in one directory – the batch submissions file, commands file, log files our tasks wrote, and
the launcher job output and error files. Of course you'll probably need input files too as well as output files .

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-pipingahistogramPipe_Histogram

Because a single job can create a lot of files, it is a good idea to for each job or set of closely related jobs, maybe with a name use a different directory
similar to the job being performed. This will help you stay organized.

Here's an example directory structure

$SCRATCH/my_project
 /original # contains or links to original fastq files
 /fastq_prep # run fastq QC and trimming jobs here
 /alignment # run alignment jobs here
 /gene_counts # analyze gene overlap here
 /test1 # play around with stuff here
 /test2 # play around with other stuff here

Command files in each directory can refer to files in other directories using relative path syntax, e.g.:

Relative path syntax

cd $SCRATCH/my_project/fastq_prep
ls ../original/my_raw_sequences.fastq.gz

Or create a symbolic link to the directory and refer to it as a sub-directory:

Symbolic link to relative path

cd $SCRATCH/my_project/fastq_prep
ln -s ../original fq
ls ./fq/my_raw_sequences.fastq.gz

relative path syntax

As we have seen, there are several special "directory names" the shell understands: bash

dot directory () refers to "here" or "the current directory".
dot dot directory () refers to "one directory up"..
tilde directory () refers to your directory~ Home

Try these relative path examples:

Relative path exercise

navigate through the symbolic link in your Home directory
cd ~scratch/core_ngs/slurm/simple
ls ../wayness
ls ../..
ls -l ~/.bashrc

(Read more about)Absolute and relative pathname syntax

Interactive sessions (idev)

So we've explored the TACC batch system. What if you want to do some interactive-style testing of your workflow?

Interactive sessions are available through the command as shown below. sessions are configured with similar parameters to batch jobs. idev idev

Start an idev session

idev -m 60 -N 1 -A OTH21164 -p normal -r CoreNGS-Tue

Notes:

-p normal requests nodes on the queuenormal
this is the default for our reservation, while the queue is the normal defaultdevelopment

-m 60 asks for a 60 minute session
-A OTH21164 specifies the TACC allocation/project to use
-N 1 asks for 1 node

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Absoluteandrelativepathnamesyntax

--reservation=CoreNGS-Tue gives us priority access to TACC nodes for the class. You normally won't use this option.

When you ask for an session, you'll see output as shown below. Note that the process may repeat the "job status: PD" (pending) step while it waits idev
for an available node.

 -> Checking on the status of development queue. OK

 -> Defaults file : ~/.idevrc
 -> System : ls6
 -> Queue : development (cmd line: -p)
 -> Nodes : 1 (cmd line: -N)
 -> Tasks per Node : 128 (Queue default)
 -> Time (minutes) : 60 (cmd line: -m)
 -> Project : OTH21164 (cmd line: -A)

 Welcome to the Lonestar6 Supercomputer

--> Verifying valid submit host (login1)...OK
--> Verifying valid jobname...OK
--> Verifying valid ssh keys...OK
--> Verifying access to desired queue (development)...OK
--> Checking available allocation (OTH21164)...OK
Submitted batch job 235465

 -> After your idev job begins to run, a command prompt will appear,
 -> and you can begin your interactive development session.
 -> We will report the job status every 4 seconds: (PD=pending, R=running).

 -> job status: PD
 -> job status: R

 -> Job is now running on masternode= c302-005...OK
 -> Sleeping for 7 seconds...OK
 -> Checking to make sure your job has initialized an env for you....OK
 -> Creating interactive terminal session (login) on master node c302-005.
 -> ssh -Y -o "StrictHostKeyChecking no" c302-005

Once the session has started, it looks quite similar to a login node environment, except for these differences: idev

the command on a login node will return a name like hostname login server login3.ls6.tacc.utexas.edu
while in an session returns a name like idev hostname compute node c303-006.ls6.tacc.utexas.edu

you cannot submit a batch job from inside an session, only from a login node idev
your session will end when the requested time has expired idev

or you can just type to return to a login node session exit

	Running batch jobs at TACC

