Decimal and Hexadecimal

A gentle \because introduction to hexadecimal (base 16).

- Decimal numbers
- Hexadecimal numbers
- Binary numbers
- Octal numbers

Decimal numbers

In our standard decimal system each digit (which can be $0,1,2,3,4,5,6,7,8,9$) in a number represents a power of ten in that place:

decimal (base 10) digits in decimal terms:	100s	10s	1s	
decimal (base 10) number:	349	3	4	9

Hexadecimal numbers

The hexidecimal (base 16) system is similar, except that each digit represents a power of 16 in that place.
Because a digit can have values greater than 9, there are additional digit symbols allowed in hex:

- A (10), B (11), C (12), D (13), E (14) and F (15)

To convert a decimal number to hex, you remove multiples of those powers of 16 as shown below.

hexadecimal digits in hexterms:		0x100s	0x10s	0×15	
hexadecimal digits in decimal terms:		2565	16s	15	
decimal (base 10) number:	349	1	5	D	$=(1 * 256)+(5 * 16)+\left(13^{*} 1\right)$
	$349-256=93$				$=(1 * 0 \times 100)+(5 * 0 \times 10)+(13 * 0 \times 1)$
	$93-(5 * 16)=13$				
	$13=0 \times D$				
hexadecimal (base 16) number:	0x15D				

Binary numbers

In the binary (base 2) system, each digit is a power of two, and the digits are just 0 and 1.
It's easy to translate a hexadecimal number into binary because you can decompose each hex digit into its 4 bits.

| binary bit (in hex terms): | $0 \times 800 \mathrm{~s}$ | $0 \times 400 \mathrm{~s}$ | $0 \times 200 \mathrm{~s}$ | $0 \times 100 \mathrm{~s}$ | $0 \times 80 \mathrm{~s}$ | $0 \times 40 \mathrm{~s}$ | $0 \times 20 \mathrm{~s}$ | $0 \times 10 \mathrm{~s}$ | $0 \times 8 \mathrm{~s}$ | $0 \times 4 \mathrm{~s}$ | $0 \times 2 \mathrm{~s}$ | $0 \times 1 \mathrm{~s}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

The benefit of using hexadecimal instead of binary, is that hex is much shorter to write, but still lets us easily determine the value of specific bits.

Octal numbers

Another popular base in the computer world is octal - (base 8) where each digit is a power of 8 , and digits are $0,1,2,3,4,5,6,7$.
Octal is more compact than binary, but less compact than either decimal or hexadecimal.

