Decimal and Hexadecimal

A gentle 🙂 introduction to *hexadecimal* (base 16).

- Decimal numbers
- Hexadecimal numbers
- Binary numbers
- Octal numbers

Decimal numbers

In our standard *decimal* system each *digit* (which can be 0,1,2,3,4,5,6,7,8,9) in a number represents a *power of ten* in that place:

decimal (base 10) digits in decimal terms:		100s	10s	1 s	
decimal (base 10) number:	349	3	4	9	= (3 × 100) + (4 × 10) + (9 × 1)

Hexadecimal numbers

The hexidecimal (base 16) system is similar, except that each digit represents a power of 16 in that place.

Because a digit can have values greater than 9, there are additional digit symbols allowed in hex:

• A (10), B (11), C (12), D (13), E (14) and F (15)

To convert a decimal number to hex, you remove multiples of those powers of 16 as shown below.

hexadecimal digits in hex terms:		0x100s	0x10s	0x1 s	
hexadecimal digits in decimal terms:		2565	16s	15	
decimal (base 10) number:	349	1	5	D	=(1*256) + (5*16) + (13*1)
	349 - 256 = 93				=(1*0x100)+(5*0x10)+(13*0x1)
	93-(5*16)=13				
	13=0xD				
hexadecimal (base 16) number:	0x15D				

Binary numbers

In the *binary* (base 2) system, each *digit* is a *power of two*, and the digits are just 0 and 1.

It's easy to translate a hexadecimal number into binary because you can decompose each hex digit into its 4 bits.

binary bit (in hex terms):	0x800s	0x400s	0x200s	0x100s	0x80s	0x40s	0x20s	0x10s	0x8s	0x4s	0x2s	0x1s
hex number 0x15D in binary:	0	0	0	1	0	1	0	1	1	1	0	1
= 0b000101011101												

The benefit of using hexadecimal instead of binary, is that hex is much shorter to write, but still lets us easily determine the value of specific bits.

Octal numbers

Another popular base in the computer world is octal - (base 8) where each digit is a power of 8, and digits are 0, 1, 2, 3, 4, 5, 6, 7.

Octal is more compact than binary, but less compact than either decimal or hexadecimal.