
More Alignment exercises

Exercise #3: PE alignment with BioITeam scripts
Output files
Verifying alignment success
Checking alignment statistics
TACC batch system considerations

Exercise #4: Bowtie2 alignment - Vibrio cholerae RNA-seq
Overview of Vibrio cholerae alignment workflow with Bowtie2
Obtaining the GenBank records
Introducing bowtie2
Building the bowtie2 vibCho index
Performing the bowtie2 alignment

Exercise #5: BWA-MEM - Human mRNA-seq
A word about real splice-aware aligners
Setup for BWA mem
RNA-seq alignment with bwa mem

Exercise #3: PE alignment with BioITeam scripts

Now that you've done everything the hard way, let's see how to do run an alignment pipeline using a alignment script maintained by the BioITeam, BWA /
. Type in the script name to see its usage.work/projects/BioITeam/common/script/align_bwa_illumina.sh

Reservations

Use our summer school () when submitting batch jobs to get higher priority on the normal queue :reservation CoreNGS-Thu ls6 today

sbatch --reservation= <batch_file>.slurmCoreNGS-Thu

1.

2.
3.
4.

5.
6.

align_bwa_illumina.sh 2022_05_05
Align Illumina SE or PE data with bwa. Produces a sorted, indexed,
duplicate-marked BAM file and various statistics files. Usage:

align_bwa_illumina.sh <aln_mode> <in_file> <out_pfx> <assembly> [paired trim_sz trim_sz2 seq_fmt qual_fmt]

Required arguments:
 aln_mode Alignment mode, either global (bwa aln) or local (bwa mem).
 in_file For single-end alignments, path to input sequence file.
 For paired-end alignments using fastq, path to the the R1
 fastq file which must contain the string 'R1' in its name.
 The corresponding 'R2' must have the same path except for 'R1'.
 out_pfx Desired prefix of output files in the current directory.
 assembly One of hg38, hg19, hg38, mm10, mm9, sacCer3, sacCer1, ce11, ce10,
 danRer7, hs_mirbase, mm_mirbase, or reference index prefix.
Optional arguments:
 paired 0 = single end alignment (default); 1 = paired end.
 trim_sz Size to trim reads to. Default 0 (no trimming)
 trim_sz2 Size to trim R2 reads to for paired end alignments.
 Defaults to trim_sz
 seq_fmt Format of sequence file (fastq, bam or scarf). Default is
 fastq if the input file has a '.fastq' extension; scarf
 if it has a '.sequence.txt' extension.
 qual_type Type of read quality scores (sanger, illumina or solexa).
 Default is sanger for fastq, illumina for scarf.
Environment variables:
 show_only 1 = only show what would be done (default not set)
 aln_args other bowtie2 options (e.g. '-T 20' for mem, '-l 20' for aln)
 no_markdup 1 = don't mark duplicates (default 0, mark duplicates)
 run_fastqc 1 = run fastqc (default 0, don't run). Note that output
 will be in the directory containing the fastq files.
 keep 1 = keep unsorted BAM (default 0, don't keep)
 bwa_bin BWA binary to use. Default bwa 0.7.x. Note that bwa 0.6.2
 or earlier should be used for scarf and other short reads.
 also: NUM_THREADS, BAM_SORT_MEM, SORT_THREADS, JAVA_MEM_ARG

Examples:
 align_bwa_illumina.sh local ABC_L001_R1.fastq.gz my_abc hg38 1
 align_bwa_illumina.sh global ABC_L001_R1.fastq.gz my_abc hg38 1 50
 align_bwa_illumina.sh global sequence.txt old sacCer3 0 '' '' scarf solexa

There are lots of bells and whistles in the arguments, but the most important are the first few:

aln_mode – whether to perform a or alignment (the 1st argument must be one of those words) global local
 global mode uses the workflow as we did abovebwa aln

 local mode uses the commandbwa mem
 – full or relative path to the file (just the R1 fastq if paired end). Can be compressed ()in_file FASTQ .gz

 – for all the output files produced by the script. Should relate back to what the data is.out_pfx prefix
– genome assembly to use. assembly

there are pre-built indexes for some common eukaryotes (, , , , ,) that you can usehg38 hg19 mm10 mm9 danRer7 sacCer3
or provide a full path for a reference index you have built somewhere bwa

paired flag – means (the default); means 0 single end 1 paired end
 – if you want the hard trimmed down to a specific length before alignment, supply that number heretrim_sz FASTQ

We're going to run this script and a similar alignment script, on the yeast data using the TACC batch system. In a new directory, copy over the Bowtie2
commands and submit the batch job. We ask for 2 hours () with 4 tasks/node (); since we have 4 commands, this will run on 1 compute -t 02:00:00 -w 4
node.

Run multiple alignments using the TACC batch system

Make sure you're not in an idev session by looking at the hostname
hostname
If the hostname looks like "c455-004.ls6.tacc.utexas.edu", exit the idev session

Copy over the Yeast data if needed
mkdir -p $SCRATCH/core_ngs/alignment/fastq
cp $CORENGS/alignment/Sample_Yeast*.gz $SCRATCH/core_ngs/alignment/fastq/

Make a new alignment directory for running these scripts
mkdir -p $SCRATCH/core_ngs/alignment/bwa_script
cd $SCRATCH/core_ngs/alignment/bwa_script
ln -s -f ../fastq

Copy the alignment commands file and submit the batch job
cd $SCRATCH/core_ngs/alignment/bwa_script
cp $CORENGS/tacc/aln_script.cmds .

launcher_creator.py -j aln_script.cmds -n aln_script -t 01:00:00 -w 4 -a OTH21164 -q normal
sbatch --reservation=CoreNGS-Thu aln_script.slurm

or
launcher_creator.py -j aln_script.cmds -n aln_script -t 01:00:00 -w 4 -a OTH21164 -q development
sbatch aln_script.slurm

showq -u

While we're waiting for the job to complete, lets look at the file.aln_script.cmds

Commands to run multiple alignment scripts

/work/projects/BioITeam/common/script/align_bwa_illumina.sh global ./fastq/Sample_Yeast_L005_R1.cat.fastq.
gz bwa_global sacCer3 1 50
/work/projects/BioITeam/common/script/align_bwa_illumina.sh local ./fastq/Sample_Yeast_L005_R1.cat.fastq.
gz bwa_local sacCer3 1
/work/projects/BioITeam/common/script/align_bowtie2_illumina.sh global ./fastq/Sample_Yeast_L005_R1.cat.fastq.
gz bt2_global sacCer3 1 50
/work/projects/BioITeam/common/script/align_bowtie2_illumina.sh local ./fastq/Sample_Yeast_L005_R1.cat.fastq.
gz bt2_local sacCer3 1

Notes:

The command performs a paired-end alignment (similar to above), but asks that the 100 bp reads be trimmed to first. 1st BWA global 50
we refer to the pre-built index for yeast by name: sacCer3

this index is located in the directory/work/projects/BioITeam/ref_genome/bwa/bwtsw/sacCer3/
we provide the name of the fileR1 FASTQ

because we request a PE alignment (the argument) the script will look for a similarly-named file.1 R2
all output files associated with this command will be named with the prefix .bwa_global

The command performs a paired-end alignment. 2nd BWA local
all output files associated with this command will be named with the prefix .bwa_local
no trimming is requested because the alignment should ignore 5' and 3' bases that don't match the reference genomelocal

The command performs a paired-end alignment. 3rd Bowtie2 global
the alignment script has the same first arguments as the alignment script. Bowtie2 BWA
all output files associated with this command will be named with the prefix .bt2_global
again, we specify that reads should first be trimmed to 50 bp.

The command performs a paired-end alignment. 4th Bowtie2 local
all output files associated with this command will be named with the prefix .bt2_local
again, no trimming is requested for the alignment.local

Output files

This alignment pipeline script performs the following steps:

Hard trims , if optionally specified ()FASTQ fastx_trimmer
Performs the or alignment (here, a PE alignment)global local

: the R1 and R2 separately, then to produce a fileBWA global bwa aln bwa sampe SAM
: call with both R1 and R2 to produce a fileBWA local bwa mem SAM

1.

2.
3.
4.
5.
6.
7.

: call in its default global (end-to-end) mode on both R1 and R2 to produce a fileBowtie2 global bowtie2 SAM
: call with both R1 and R2 to produce a fileBowtie2 local bowtie2 --local SAM

Converts to ()SAM BAM samtools view
Sorts the ()BAM samtools sort
Marks duplicates ()Picard MarkDuplicates
Indexes the sorted, duplicate-marked ()BAM samtools index
Gathers statistics (, , plus a custom statistics script of Anna's)samtools idxstats samtools flagstat
Removes intermediate files

There are a number of output files, with the most important being those desribed below.

 – Log file of <prefix>.align.log the entire alignment process.
check the of this file to make sure the alignment was successful tail

<prefix>.sort.dup.bam – Sorted, duplicate-marked alignment file.
<prefix>.sort.dup.bam.bai – Index for the sorted, duplicate-marked alignment file
<prefix>.flagstat.txt – output samtools flagstat
<prefix>.idxstats.txt – output samtools idxstats
<prefix>.samstats.txt – Summary alignment statistics from Anna's stats script
<prefix>.iszinfo.txt – Insert size statistics (for paired-end alignments) from Anna's stats script

Verifying alignment success

The alignment log will have a "I ran successfully" message at the end if all went well, and if there was an error, the important information should also be at
the end of the log file. So you can use to check the status of an alignment. For example: tail

Checking the alignment log file

tail bwa_global.align.log

This will show something like:

--
..Done alignmentUtils.pl bamstats - 2022-06-10 12:59:05
.. samstats file 'bwa_global.samstats.txt' exists and is not empty - 2022-06-10 12:59:05
===
Cleaning up files (keep 0) - 2022-06-10 12:59:05
===
ckRes 0 cleanup
===
All bwa alignment tasks completed successfully! - 2022-06-10 12:59:06
===

Notice that : " ". It should only appear in any successful alignment log.success message All bwa alignment tasks completed successfully! once

When multiple alignment commands are run in parallel it is important to check them all, and you can use looking for part of the unique success grep
message to do this. For example:

Count the number of successful alignments

grep 'completed successfully!' *align.log | wc -l

If this command returns 4 (the number of alignment tasks we performed), all went well, and we're done.

But what if something went wrong? How can we tell which alignment task was not successful? You could the log files one by one to see which one(s) tail
don't have the message, but you can also use a special option to do this work. grep

Check for failed alignment tasks

grep -L 'completed successfully' *.align.log

The option tells to only print the that the pattern. Perfect! To see happens in the case of failure, try it on a file that doesn't -L grep filenames don't contain
contain that message:

grep -L 'completed successfully' aln_script.cmds

Checking alignment statistics

The statistics files produced by the alignment pipeline has a lot of good information in one place. If you look at <prefix>.samstats.txt bwa_global.
 you'll see something like this:samstats.txt

<prefix>.samstats.txt output

 Aligner: bwa
 Total sequences: 1184360
 Total mapped: 539079 (45.5 %)
 Total unmapped: 645281 (54.5 %)
 Primary: 539079 (100.0 %)
 Secondary:
 Duplicates: 249655 (46.3 %)
 Fwd strand: 267978 (49.7 %)
 Rev strand: 271101 (50.3 %)
 Unique hit: 503629 (93.4 %)
 Multi hit: 35450 (6.6 %)
 Soft clip:
 All match: 531746 (98.6 %)
 Indels: 7333 (1.4 %)
 Spliced:

 Total PE seqs: 1184360
 PE seqs mapped: 539079 (45.5 %)
 Num PE pairs: 592180
 F5 1st end mapped: 372121 (62.8 %)
 F3 2nd end mapped: 166958 (28.2 %)
 PE pairs mapped: 80975 (13.7 %)
 PE proper pairs: 16817 (2.8 %)

Since this was a paired end alignment there is paired-end specific information reported.

You can also view statistics on insert sizes for properly paired reads in the file. This tells you the average (mean) insert size, bwa_global.iszinfo.txt
standard deviation, mode (most common value), and fivenum values (minimum, 1st quartile, median, 3rd quartile, maximum).

<prefix>.iszinfo.txt output

 Insert size stats for: bwa_global
 Number of pairs: 16807 (proper)
 Number of insert sizes: 406
 Mean [-/+ 1 SD]: 296 [176 416] (sd 120)
 Mode [Fivenum]: 228 [51 224 232 241 500]

A quick way to check alignment stats if you have run multiple alignments is again to use . For example:grep

Review multiple alignment rates

grep 'Total mapped' *samstats.txt

will produce output like this:

bt2_global.samstats.txt: Total mapped: 602893 (50.9 %)
bt2_local.samstats.txt: Total mapped: 788069 (66.5 %)
bwa_global.samstats.txt: Total mapped: 539079 (45.5 %)
bwa_local.samstats.txt: Total mapped: 1008000 (76.5 %

Exercise: How would you list the median insert size for all the alignments?

That information is in the * files, on the line labeled ..iszinfo.txt Mode

The median value is th 3rd value in the 5 fivnum values; it is the 7th whitespace-separated field on the line.Mode

1.
2.
3.
4.
5.
6.

1.

2.

3.

4.

Use to isolate the line, and to isolate the median value field: grep Mode awk

grep 'Mode' *.iszinfo.txt | awk '{print $1,"Median insert size:",$7}'

TACC batch system considerations

The great thing about pipeline scripts like this is that you can perform alignments on many datasets in parallel at TACC, and they are written to take
advantage of having multiple cores on TACC nodes where possible.

On the the pipeline scripts are designed to run best with no more than 4 tasks per node. Although each node has 128 physical cores per node, the ls6 ls6
alignment workflow is heavily I/O bound overall, and we don't want to overload the file system.

Exercise #4: Bowtie2 alignment - Vibrio cholerae RNA-seq

While we have focused on aligning eukaryotic data, the same tools can be used with prokaryotic data. The major differences are less about the underlying
data and much more about the external/public databases that store and distribute reference data. If we want to study a prokaryote, the reference data is

 . usually downloaded from a resource like GenBank

In this exercise, we will use some RNA-seq data from Vibrio cholerae, published on GEO here, and align it to a reference genome.

Overview of Vibrio cholerae alignment workflow with Bowtie2

Alignment of this prokaryotic data follows the workflow below. Here we will concentrate on steps 1 and 2.

Prepare the reference index for vibCho bowtie2 from GenBank records
Align reads using bowtie2, producing a fileSAM

 Convert the file to a fileSAM BAM (samtools view)
Sort the file by genomic location ()BAM samtools sort
Index the file ()BAM samtools index
Gather simple alignment statistics (and)samtools flagstat samtools idxstats

Obtaining the GenBank records

First prepare a directory for the , and change to it:vibCho fasta

mkdir -p $SCRATCH/core_ngs/references/fasta
cd $SCRATCH/core_ngs/references/fasta

V. cholerae has two chromosomes. We download each separately.

Navigate to http://www.ncbi.nlm.nih.gov/nuccore/NC_012582
click on the down arrow (top right of page)Send to

select Complete Record
select as , and File Destination Format FASTA
click Create File

in the dialog, select then Opening File Save File OK
Save the file on your local computer as NC_012582.fa

Back on the main pagehttp://www.ncbi.nlm.nih.gov/nuccore/NC_012582
click on the down arrow (top right of page)Send to

select Complete Record
select as , and File Destination Format GFF3
click Create File

in the dialog, select then Opening File Save File OK
Save the file on your local computer as NC_012582.gff3

Repeat steps 1 and 2 for the 2nd chromosome
NCBI URL is http://www.ncbi.nlm.nih.gov/nuccore/NC_012583
use as the filename prefix for the files you save NC_012583
you should now have 4 files:

NC_012582.fa, NC_012582.gff3
NC_012583.fa, NC_012583.gff3

Transfer the files from your local computer to TACC
to the directory created above~/scratch/core_ngs/references/vibCho

On a Mac or Windows 10 or later, use scp from your laptop
Otherwise on Windows, use the tool pscp.exe PuTTy
See Copying files between TACC and your laptop

Always specify wayness 4 for alignment pipeline scripts

These alignment scripts should always be run with a of () in the batch system, meaning at most 4 commands per node. wayness 4 -w 4 ls6

http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1519470
http://www.ncbi.nlm.nih.gov/nuccore/NC_012582
http://www.ncbi.nlm.nih.gov/nuccore/NC_012582
http://www.ncbi.nlm.nih.gov/nuccore/NC_012583
https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Copying_files_to_from_TACC

mkdir -p $SCRATCH/core_ngs/references/fasta
cd $SCRATCH/core_ngs/references/fasta
cp $CORENGS/references/fasta/NC_* .

Once you have the 4 files locally in your directory, combine them using :$SCRATCH/core_ngs/references/vibCho cat

cd $SCRATCH/core_ngs/references/fasta
cat NC_01258[23].fa > vibCho.O395.fa
cat NC_01258[23].gff3 > vibCho.O395.gff3

verify there are 2 contigs in vibCho.O395.fa
grep -P '^>' vibCho.O395.fa

Now we have a reference sequence file that we can use with the bowtie2 reference builder, and ultimately align sequence data against.

Introducing bowtie2

First make sure you're in an session: idev

Start an idev session

idev -m 120 -A OTH21164 -N 1 -r CoreNGS-Thu
or
idev -m 90 -A OTH21164 -N 1 -p development

Go ahead and load the module so we can examine some help pages and options.bowtie2

module load biocontainers
module load bowtie2

 Now that it's loaded, check out the options. There are of them! In fact for the full range of options and their meaning, Google "Bowtie2 manual" and a lot
bring up that page (). The is several pages long! Ouch!http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml Table of Contents

This is the key to using - it allows you to control almost everything about its behavior, which make it the go-to aligner for specialized alignment bowtie2
tasks (e.g. aligning miRNA or other small reads). But it also makes it is much more challenging to use than – and it's easier to screw things up too! bwa

Building the bowtie2 vibCho index

Before the alignment, of course, we've got to build a - specific index using . Go ahead and check out its options. Unlike for the bowtie2 bowtie2-build
aligner itself, we only need to worry about a few things here:

reference_in file is just the FASTA we built from GenBank recordsvibCho.O395.fa
bt2_index_base is the of all the output file prefix bowtie2-build

Here, to build the reference index for alignment, we only need the FASTA file. (This is not always true - extensively spliced transcriptomes requires splice
junction annotations to align RNA-seq data properly.)

First create a directory specifically for the index, then build the index using .bowtie2 bowtie-build

mkdir -p $SCRATCH/core_ngs/references/fasta
cd $SCRATCH/core_ngs/references/fasta
cp $CORENGS/references/fasta/vibCho* .

http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml

Prepare Bowtie2 index files for vibCho

mkdir -p $SCRATCH/core_ngs/references/bt2/vibCho
cd $SCRATCH/core_ngs/references/bt2/vibCho

Symlink to the fasta file you created using relative path syntax
ln -sf ../../fasta/vibCho.O395.fa

bowtie2-build vibCho.O395.fa vibCho.O395

This should also go pretty fast. You can see the resulting files using ls like before.

Performing the bowtie2 alignment

Make sure you're in an session with the module loaded:idev bowtie2 BioContainers

idev -m 120 -A OTH21164 -N 1 -r CoreNGS-Thu
or
idev -m 90 -A OTH21164 -N 1 -p development

module load biocontainers
module load bowtie2

We'll set up a new directory to perform the data alignment. But first make sure you have the file to align and the vibCho index.V. cholerae FASTQ bowtie2

Get a pre-built vibCho index if you didn't already build one
mkdir -p $SCRATCH/core_ngs/references/bt2/vibCho
cp $CORENGS/references/bt2/vibCho/*.* $SCRATCH/core_ngs/references/bt2/vibCho/

Get the FASTQ to align
mkdir -p $SCRATCH/core_ngs/alignment/fastq
cp $CORENGS/alignment/*fastq.gz $SCRATCH/core_ngs/alignment/fastq/

Now set up a directory to do this alignment, with symbolic links to the index directory and the directory containing the to align: bowtie2 FASTQ

mkdir -p $SCRATCH/core_ngs/alignment/vibCho
cd $SCRATCH/core_ngs/alignment/vibCho
ln -sf ../../references/bt2/vibCho
ln -sf ../../alignment/fastq fq

We'll be aligning the reads now in (how many sequences does it contain?)V. cholerae ./fq/cholera_rnaseq.fastq.gz

Note that here the data is from standard mRNA sequencing, meaning that the DNA are typically longer than the There is likely to be fragments . reads
very little contamination that would require using a local rather than global alignment, or many other pre-processing steps (e.g. adapter trimming). Thus,
we will run with default parameters, omitting options other than the input, output, and reference index. This performs a alignment. bowtie2 global

As you can tell from looking at the help message, the general syntax looks like this: bowtie2

bowtie2 [options]* -x <bt2-idx> {-1 <m1> -2 <m2> | -U <r>} [-S <sam>]

So execute this global, single-end alignment command: bowtie2

mkdir -p $SCRATCH/core_ngs/references/fasta
cp $CORENGS/references/fasta/vibCho* $SCRATCH/core_ngs/references/fasta/

mkdir -p $SCRATCH/core_ngs/references/bt2/vibCho
cp $CORENGS/references/bt2/vibCho/*.* $SCRATCH/core_ngs/references/bt2/vibCho/

mkdir -p $SCRATCH/core_ngs/alignment/vibCho
cd $SCRATCH/core_ngs/alignment/vibCho
ln -sf ../../references/bt2/vibCho
ln -sf ../../alignment/fastq fqmkdir -p $SCRATCH/core_ngs/alignment/vibCho

cd $SCRATCH/core_ngs/alignment/vibCho
bowtie2 -x vibCho/vibCho.O395 -U fq/cholera_rnaseq.fastq.gz \
 -S cholera_rnaseq.sam 2>&1 | tee aln_global.log

Notes:

-x vibCho/vibCho.O395.fa – prefix path of inde filesx
-U fq/cholera_rnaseq.fastq.gz – FASTQ file for single-end (npaired) alignmentU
-S cholera_rnaseq.sam – tells to report alignments in format to the specified file bowtie2 AMS
2>&1 redirects to standard error standard output

while the alignment data is being written to the file, will report its progress to .cholera_rnaseq.sam bowtie2 standard error
| tee aln.log takes the progress output and pipes it to the program bowtie2 tee

 tee takes its and writes it to the specified file and also to standard input standard output
that way, you can see the progress output now, but also save it to review later (or supply to)MultiQC

Since the file is not large, this should not take too long, and you will see progress output like this:FASTQ

89006 reads; of these:
 89006 (100.00%) were unpaired; of these:
 5902 (6.63%) aligned 0 times
 51483 (57.84%) aligned exactly 1 time
 31621 (35.53%) aligned >1 times
93.37% overall alignment rate

When the job is complete you should have a file that you can examine using whatever commands you like. Remember, to further cholera_rnaseq.sam
process it downstream, you should create a sorted, indexed file from this output.BAM SAM

Exercise: Repeat the alignment performing a local alignment, and write the output in BAM format. How do the alignment statistics compare?

--local

module load samtools
cd $SCRATCH/core_ngs/alignment/vibCho
bowtie2 --local -x vibCho/vibCho.O395 -U fq/cholera_rnaseq.fastq.gz 2>aln_local.log | \
 samtools view -b > cholera_rnaseq.local.bam

Reports these alignment statistics:

89006 reads; of these:
 89006 (100.00%) were unpaired; of these:
 13359 (15.01%) aligned 0 times
 46173 (51.88%) aligned exactly 1 time
 29474 (33.11%) aligned >1 times
84.99% overall alignment rate

Interestingly, the local alignment rate here is lower than we saw with the global alignment. Usually local alignments have higher alignment rates than
corresponding global ones.

Exercise #5: BWA-MEM - Human mRNA-seq

After came out with a local alignment option, it wasn't long before developed its own local alignment algorithm called BWA-MEM (for aximal bowtie2 bwa M E
xact atches), implemented by the command. M bwa mem

bwa mem has the following advantages:

It provides the simplicity of using without the complexities of local alignmentbwa
It can align different portions of a read to different locations on the genome

In a total RNA-seq experiment, reads will (at some frequency) span a splice junction themselves
or a pair of reads in a paired-end library will fall on either side of a splice junction.

We want to be able to align these splice-adjacent reads for many reasons, from accurate transcript quantification to novel fusion
transcript discovery.

This exercise will align a human total RNA-seq dataset that includes numerous reads that cross splice junctions.

A word about real splice-aware aligners

Using for RNA-seq alignment is sort of a "poor man's" RNA-seq alignment method. Real splice-aware aligners like or havbwa mem tophat2, hisat2 STAR
e more complex algorithms (as shown below) – and take a lot more time!

In the transcriptome-aware alignment above, reads that span splice junctions are reported in the file with that start in the first SAM genomic coordinates
exon and end in the second exon (the string uses the operator, e.g. 30 1000 60).CIGAR N M N M

BWA MEM does not know about the exon structure of the genome. But it can align different sub-sections of a read to two different locations, producing two
alignment records from input read (one of the two will be marked as (flag). one secondary 0x100

BWA MEM splits junction-spanning reads into two alignment records

Setup for BWA mem

First set up our working directory for this alignment. Since it takes a long time to build a index for a large genome (here human /), we'll bwa hg38 GRCh38
use one that the BioITeam maintains in its area./work/projects/BioITeam/ref_genome

Run multiple alignments using the TACC batch system

Make sure you're in an idev session
idev -m 120 -N 1 -A OTH21164 -r CoreNGS-Thu
or
idev -m 90 -N 1 -A OTH21164 -p development

Load the modules we'll need
module load biocontainers
module load bwa
module load samtools

Copy over the FASTQ data if needed
mkdir -p $SCRATCH/core_ngs/alignment/fastq
cp $CORENGS/alignment/*.gz $SCRATCH/core_ngs/alignment/fastq/

Make a new alignment directory for running these scripts
cds
mkdir -p core_ngs/alignment/bwamem
cd core_ngs/alignment/bwamem
ln -sf ../fastq
ln -sf /work/projects/BioITeam/ref_genome/bwa/bwtsw/hg38

Now take a look at usage (type with no arguments). The most important parameters are the following:bwa mem bwa mem

Option Effect

-k Controls the minimum seed length (default = 19)

-w Controls the "gap bandwidth", or the length of a maximum gap. This is particularly relevant for MEM, since it can determine whether a read
is split into two separate alignments or is reported as one long alignment with a long gap in the middle (default = 100)

-M For split reads, mark the shorter read as secondary

-r Controls how long an alignment must be relative to its seed before it is re-seeded to try to find a best-fit local match (default = 1.5, e.g. the
value of -k multiplied by 1.5)

-c Controls how many matches a MEM must have in the genome before it is discarded (default = 10000)

-t Controls the number of threads to use

RNA-seq alignment with bwa mem

Based on its help info, this is the structure of the command we will use:bwa mem

bwa mem -M <ref.fa> <reads.fq> > outfile.sam

After performing the setup above, execute the following command in your session: idev

cd $SCRATCH/core_ngs/alignment/bwamem
bwa mem -M hg38/hg38.fa fastq/human_rnaseq.fastq.gz 2>hs_rna.bwamem.log |
 samtools view -b | \
 samtools sort -O BAM -T human_rnaseq.tmp > human_rnaseq.sort.bam

This multi-pipe command performs three steps:

The alignmentbwa mem
the program's progress output (on) is redirected to a log file ()standard error 2>hs_rna.bwamem.log
its alignment records (on) is piped to the next step (conversion to)standard output BAM

Conversion of 's output to formatbwa mem SAM BAM
recall that the option to says to output in format-b samtools view BAM

Sorting the fileBAM
samtools sort takes the binary output from and writes a sorted file.samtools view BAM

Because the progress output is being redirected to a log file, we won't see anything until the command completes. Then you should have a human_rnaseq
 file and an logfile..sort.bam hs_rna.bwamem.log

Exercise: Compare the number of original FASTQ reads to the number of alignment records.

Use the | | idiom to count FASTQ reads. zcat wc -l awk

Use to report alignment statistics.samtools flagstat
Count the file reads:FASTQ

cd $SCRATCH/core_ngs/alignment/bwamem
zcat ./fastq/human_rnaseq.fastq.gz | wc -l | awk '{print $1/4}'

The file has 100,000 reads.

Generate alignment statistics from the sorted BAM file:

cd $SCRATCH/core_ngs/alignment/bwamem
samtools flagstat human_rnaseq.sort.bam | tee hs_rnaseq.flagstat.txt

Output will look like this:

133570 + 0 in total (QC-passed reads + QC-failed reads)
33570 + 0 secondary
0 + 0 supplementary
0 + 0 duplicates
133450 + 0 mapped (99.91% : N/A)
0 + 0 paired in sequencing
0 + 0 read1
0 + 0 read2
0 + 0 properly paired (N/A : N/A)
0 + 0 with itself and mate mapped
0 + 0 singletons (N/A : N/A)
0 + 0 with mate mapped to a different chr
0 + 0 with mate mapped to a different chr (mapQ>=5)

There were 133,570 alignment records reported for the 100,000 input reads.

Because can split reads and report two alignment records , there are 33,570 reads reported here.bwa mem for the same read secondary

Be aware that some downstream tools (for example the suite, often used before SNP calling) do not like it when a read name appears Picard
more than once in the file. Such reads can be filtered, but only if they can be identified as by specifying the SAM secondary bwa mem -M
option as we did above. This option reports the longest alignment normally but marks additional alignments for the read as secondary (the 0x100
BAM flag). This designation also allows you to easily filter out the secondary reads with if desired. samtools view -F 0x104

	More Alignment exercises

