
1.

2.

3.

4.

Pre-processing raw sequences
Before you start the alignment and analysis processes, it us useful to perform some initial quality checks on your raw data. You may also need to pre-
process the sequences to trim them or remove adapters. Here we will assume you have paired-end data from one of GSAF's Illumina sequencers.

FASTQ Quality Assurance tools
FastQC

Running FastQC
Looking at FastQC output

Using MultiQC to consolidate multiple QC reports
Trimming sequences

FASTX Toolkit
Adapter trimming with cutadapt

cutadapt example
paired-end data considerations
running cutadapt in a batch job

FASTQ Quality Assurance tools

The first order of business after receiving sequencing data should be to check your data quality. This often-overlooked step helps guide the manner in
which you process the data, and can prevent many headaches.

FastQC

 FastQC is a tool that produces a quality analysis report on files.FASTQ

Useful links:

 FastQC report for a Good Illumina dataset
 FastQC report for a Bad Illumina dataset

Online documentation for each FastQC report

First and foremost, . Its "grading scale" (- good, - warning, - failed) incorporates the FastQC "Summary" should generally be ignored green yellow red
assumptions for a particular kind of experiment, and is not applicable to most real-world data. Instead, look through the individual reports and evaluate
them according to your experiment type.

The reports I find most useful, and why: FastQC

Should I trim low quality bases?
consult the reportPer base sequence quality

based on sequencesall
Do I need to remove adapter sequences?

consult the report Adapter Content
Do I have other contamination?

consult the reportOverrepresented Sequences
based on the 1st 100,000 sequences, trimmed to 75bp

How complex is my library?
consult the reportSequence Duplication Levels
but remember that different experiment types are expected to have vastly different duplication profiles

Running FastQC
Make sure you're in an session. If you're in an session, the command will display a name like . But if idev idev hostname c455-021.ls6.tacc.utexas.edu
you're on a login node the will be something like . hostname login2.ls6.tacc.utexas.edu

If you're on a login node, start an session like this: idev

Reservations

Use our summer school () when submitting batch jobs to get higher priority on the normal queue :reservation CoreNGS-Wed ls6 today

sbatch --reservation= <batch_file>.slurmCoreNGS-Wed
idev -m 120 -N 1 -A OTH21164 -r CoreNGS-Wed

For many of its reports, analyzes only the first ~100,000 sequences in order to keep processing and memory requirements down. FastQC
Consult the for full details.Online documentation for each FastQC report

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/

Start an idev session

idev -m 120 -N 1 -A OTH21164 -r CoreNGS-Wed

 FastQC is available as part of on . To make it available:BioContainers ls6

Load the main BioContainers module then load the fastqc module
module load biocontainers # make take a while
module load fastqc

It has a number of options (see) but can be run very simply with just a file as its argument.fastqc --help | more FASTQ

Setup (if needed)
export CORENGS=/work/projects/BioITeam/projects/courses/Core_NGS_Tools
mkdir -p $SCRATCH/core_ngs/fastq_prep
cd $SCRATCH/core_ngs/fastq_prep
cp $CORENGS/misc/small.fq .

Running fastqc on a FASTQ file

make sure you're in your $SCRATCH/core_ngs/fastq_prep directory
cds
cd core_ngs/fastq_prep
fastqc small.fq

Exercise: What did FastQC create?

ls -l shows two new items.

-rw-rw-r-- 1 abattenh G-823651 676531 Jun 9 20:53 small_fastqc.html
-rw-rw-r-- 1 abattenh G-823651 464403 Jun 9 20:53 small_fastqc.zip

small_fastqc.html is the FastQC report, in HTML format.
small_fastqc.zip is a zipped (compressed) directory of FastQC output files.

Let's unzip the file and see what's in it..zip

unzip small_fastqc.zip

What was created?

ls -l shows one new item, the directory (note the " " in " ")small_fastqc d drwxrwxr-x

drwxrwxr-x 4 abattenh G-823651 6 Jun 10 2022

ls -l small_fastqc shows the directory contents:

drwxrwxr-x 2 abattenh G-823651 4 Jun 10 2022 Icons
drwxrwxr-x 2 abattenh G-823651 9 Jun 10 2022 Images
-rw-rw-r-- 1 abattenh G-823651 77464 Jun 10 2022 fastqc.fo
-rw-rw-r-- 1 abattenh G-823651 25602 Jun 10 2022 fastqc_data.txt
-rw-rw-r-- 1 abattenh G-823651 676531 Jun 10 2022 fastqc_report.html
-rw-rw-r-- 1 abattenh G-823651 419 Jun 10 2022 summary.txt

Looking at FastQC output

You can't run a web browser directly from your "dumb terminal" command line environment. The results have to be placed where a web browser FastQC
can access them. One way to do this is to copy the results back to your laptop, for example by using (read more at scp from your computer Copying files

).from TACC to your laptop

For convenience, we put an example report at this URL: FastQC
 https://web.corral.tacc.utexas.edu/BioinformaticsResource/CoreNGS/yeast_stuff/Sample_Yeast_L005_R1.cat_fastqc/fastqc_report.html

Exercise: Based on this FastQC output, should we trim this data?

The report does not look good. The data should probably be trimmed (to 40 or 50 bp) before alignment.Per base sequence quality

Newer versions of FastQC have slightly different report formats. See this example:
https://web.corral.tacc.utexas.edu/BioinformaticsResource/CoreNGS/reports/wcaar_mqc_report.html

Using MultiQC to consolidate multiple QC reports

 FastQC reports are all well and good, but what if you have dozens of samples? It quickly becomes tedious to have to look through all the separate FastQC
reports, including separate R1 and R2 reports for paired end datasets.

The tool helps address this issue. Once reports have been generated, it can scan them and create a consolidated report from all the MultiQC FastQC
individual reports.

Whats even cooler, is that can also consolidate reports from other bioinformatics tools (e.g. aligner statistics, statistics, MultiQC bowtie2 samtools cutada
, , and may more). And if your favorite tool is not known by , you can configure custom reports fairly easily. For more information, see this pt Picard MultiQC

recent Byte Club tutorial on Using MultiQC.

Here we're just going to create a report for two paired-end ATAC-seq datasets – 4 FASTQ files total. First stage the data: MultiQC

mkdir -p $SCRATCH/core_ngs/multiqc/fqc.atacseq
cd $SCRATCH/core_ngs/multiqc/fqc.atacseq
cp $CORENGS/multiqc/fqc.atacseq/*.zip .

You should see these 4 files in your directory:$SCRATCH/core_ngs/multiqc/fqc.atacseq

50knuclei_S56_L007_R1_001_fastqc.zip 5knuclei_S77_L008_R1_001_fastqc.zip
50knuclei_S56_L007_R2_001_fastqc.zip 5knuclei_S77_L008_R2_001_fastqc.zip

Now make the accessible in your environment.BioContainers MultiQC

Make sure you're in an session. If you're in an session, the command will display a name like . But if idev idev hostname c455-020.ls6.tacc.utexas.edu
you're on a login node the will be something like . hostname login1.ls6.tacc.utexas.edu

If you're on a login node, start an session like this: idev

Start an idev session

idev -m 120 -N 1 -A OTH21164 -r CoreNGSday3

Load the main BioContainers module if you have not already
module load biocontainers # may take a while

Load the multiqc module and ask for its usage information
module load multiqc
multiqc --help | more

export CORENGS=/work/projects/BioITeam/projects/courses/Core_NGS_Tools
mkdir -p $SCRATCH/core_ngs/multiqc/fqc.atacseq
cd $SCRATCH/core_ngs/multiqc/fqc.atacseq
cp $CORENGS/multiqc/fqc.atacseq/*.zip .

Even though has many options, it is quite easy to create a basic report by just pointing it to the directory where individual reports are located: multiqc

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-CopyingfilesfromTACCtoyourlaptop
https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-CopyingfilesfromTACCtoyourlaptop
https://web.corral.tacc.utexas.edu/BioinformaticsResource/CoreNGS/yeast_stuff/Sample_Yeast_L005_R1.cat_fastqc/fastqc_report.html
https://web.corral.tacc.utexas.edu/BioinformaticsResource/CoreNGS/reports/wcaar_mqc_report.html
https://wikis.utexas.edu/display/bioiteam/Using+MultiQC

cd $SCRATCH/core_ngs/multiqc
multiqc fqc.atacseq

Exercise: How many reports did multiqc find?

Based on its execution output, it found 4 reports

[WARNING] multiqc : MultiQC Version v1.12 now available!
[INFO] multiqc : This is MultiQC v1.7
[INFO] multiqc : Template : default
[INFO] multiqc : Searching 'fqc.atacseq/'
[INFO] fastqc : Found 4 reports
[INFO] multiqc : Compressing plot data
[INFO] multiqc : Report : multiqc_report.html
[INFO] multiqc : Data : multiqc_data
[INFO] multiqc : MultiQC complete

Exercise: What was created by running multiqc?

One file was created () and one directory ().multiqc_report.html multiqc_data

You can see the resulting report here: . MultiQC https://web.corral.tacc.utexas.edu/BioinformaticsResource/CoreNGS/reports/atacseq/multiqc_report.html

And an example of a report that includes both standard and custom plots is this is the Tag-Seq post-processing report produced by the MultiQC MultiQC
Bioinformatics Consulting Group: https://web.corral.tacc.utexas.edu/BioinformaticsResource/CoreNGS/reports
/mqc_tagseq_trim_JA21030_SA21045_mouse.html

Trimming sequences

There are two main reasons you may want to trim your sequences:

As a quick way to remove 3' adapter contamination, when extra bases provide little additional information
For example, 75+ bp ChIP-seq reads – 50 bases are more than enough for a good mapping, and trimming to 50 is easier than adapter
removal, especially for paired end data.
You would not choose this approach for RNA-seq data, where 3' bases may map to a different exon, and that is valuable information.

Instead you would specifically remove adapter sequences.
Low quality base reads from the sequencer can affect some programs

This is an issue with sequencing for genome or transcriptome assembly.
Aligners such as and seem to do fine with a few low quality bases, soft clipping them if necessary. bwa bowtie2

There are a number of open source tools that can trim off 3' bases and produce a file of the trimmed reads to use as input to the alignment FASTQ
program.

FASTX Toolkit

The provides a set of command line tools for manipulating both and files. The are described on their FASTX Toolkit FASTA FASTQ available modules
website. They include a fast utility for trimming sequences (and quality score strings) before alignment.fastx_trimmer FASTQ

Make sure you're in an session. If you're in an session, the command will display a name like . But if idev idev hostname c455-021.ls6.tacc.utexas.edu
you're on a login node the will be something like . hostname login3.ls6.tacc.utexas.edu

If you're on a login node, start an session like this: idev

Start an idev session

idev -m 120 -N 1 -A OTH21164 -r CoreNGS-Wed

FASTX Toolkit is available as a module.BioContainers

module load biocontainers # takes a while
module spider fastx
module load fastxtools

Here's an example of how to run to trim all input sequences down to 50 bases.fastx_trimmer

Where does read its input from? And where does it write its output? Ask the program for its usage.fastx_trimmer

https://web.corral.tacc.utexas.edu/BioinformaticsResource/CoreNGS/reports/atacseq/multiqc_report.html
https://web.corral.tacc.utexas.edu/BioinformaticsResource/CoreNGS/reports/mqc_tagseq_trim_JA21030_SA21045_mouse.html
https://web.corral.tacc.utexas.edu/BioinformaticsResource/CoreNGS/reports/mqc_tagseq_trim_JA21030_SA21045_mouse.html
http://hannonlab.cshl.edu/fastx_toolkit/

will fastx_trimmer give us usage information?
fastx_trimmer --help

no, it wants you to use the -h option to ask for help:
fastx_trimmer -h

The : its help informationusage

fastx_trimmer [-h] [-f N] [-l N] [-t N] [-m MINLEN] [-z] [-v] [-i INFILE] [-o OUTFILE]

Because the options are shown in , reading from a file and writing to a file are optional. That means that by default [INFILE] [OUTFILE]-i -o []brackets
the program reads its input data from and writes trimmed sequences to :standard input standard output

Set up directory for working with FASTQs

export CORENGS=/work/projects/BioITeam/projects/courses/Core_NGS_Tools

Create a $SCRATCH area to work on data for this course,
with a sub-direct[1ory for pre-processing raw fastq files
mkdir -p $SCRATCH/core_ngs/fastq_prep

Make a symbolic links to the original yeast data:
cd $SCRATCH/core_ngs/fastq_prep
ln -s -f $CORENGS/yeast_stuff/Sample_Yeast_L005_R1.cat.fastq.gz
ln -s -f $CORENGS/yeast_stuff/Sample_Yeast_L005_R2.cat.fastq.gz

Trimming FASTQ sequences to 50 bases with fastx_trimmer

make sure you're in your $SCRATCH/core_ngs/fastq_prep directory
cd $SCRATCH/core_ngs/fastq_prep
zcat Sample_Yeast_L005_R1.cat.fastq.gz | fastx_trimmer -l 50 -Q 33 > trim50_R1.fq

The option says that base 50 should be the ast base (i.e., trim down to 50 bases)-l 50 l
The option specifies how base ualities on the 4th line of each entry are encoded. -Q 33 Q FASTQ

The is an older program written in the time when Illumina base qualities were encoded differently, so its default does not FASTX Toolkit
work for modern files.FASTQ
These days Illumina base qualities follow the Sanger standard (Phred score + 33 to make an ASCII character).FASTQ

Exercise: compressing fastx_trimmer output

How would you tell to compress () its output file?fastx_trimmer gzip

Type (elp) to see program documentationfastx_trimmer -h h
You could supply the option like this:-z

zcat Sample_Yeast_L005_R1.cat.fastq.gz | fastx_trimmer -l 50 -Q 33 -z > trim50_R1.fq.gz

or, using the -o option:
zcat Sample_Yeast_L005_R1.cat.fastq.gz | fastx_trimmer -l 50 -Q 33 -z -o trim50_R1.fq.gz

Or you could the output yourself. gzip

zcat Sample_Yeast_L005_R1.cat.fastq.gz | fastx_trimmer -l 50 -Q 33 | gzip > trim50_R1.fq.gz

See the 3x+ difference in file sizes when the output is compressed with ls -lh *trim

Exercise: other fastx toolkit programs

What other manipulation programs are part of the ?FASTQ FASTX Toolkit

Type then tab twice (completion) to see their names.fastx_

The also has programs that work on files. To see them, type then tab twice (completion) to see their names.FASTX Toolkit FASTA fasta_

Adapter trimming with cutadapt

Data from RNA-seq or other library prep methods that result in short fragments can cause problems with moderately long (50-100bp) reads, since the 3'
end of sequences can be read into (or even through) to the 3' adapter at different read offsets . This can cause the "real" insert 3' adapter contamination
sequence not to align because the adapter sequence does not correspond to the bases at the 3' end of the reference genome sequence.

Unlike general fixed-length trimming (e.g. trimming 100 bp sequences to 50 bp), removes differing numbers of 3' bases specific adapter trimming
depending on where the adapter sequence is found.

The program, available in , is an excellent tool for removing adapter contamination. cutadapt BioContainers

Make sure you're in an session. If you're in an session, the command will display a name like . But if idev idev hostname c455-021.ls6.tacc.utexas.edu
you're on a login node the will be something like . hostname login3.ls6.tacc.utexas.edu

If you're on a login node, start an session like this: idev

Start an idev session

idev -m 120 -N 1 -A OTH21164 -r CoreNGS-Wed

module load biocontainers
module spider cutadapt

module load cutadapt
cutadapt --help

A common application of is to remove adapter contamination from RNA library sequence data. Here we'll show that for some small RNA libraries cutadapt
sequenced by GSAF, using their documented small RNA library adapters.

When you run you give it the adapter sequence to trim, and . Here's what the options cutadapt the adapter sequence is different for R1 and R2 reads
look like (without running it on our files yet).

cutadapt command for R1 sequences (GSAF RNA library)

cutadapt -m 22 -O 4 -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC <fastq_file>

cutadapt command for R2 sequences (GSAF RNA library)

cutadapt -m 22 -O 4 -a TGATCGTCGGACTGTAGAACTCTGAACGTGTAGA <fastq_file>

Notes:

The option says to discard any sequence that is smaller than 22 bases (inimum) after trimming. -m 22 m
This avoids problems trying to map very short, highly ambiguous sequences.

the (verlap) option says not to trim 3' adapter sequences unless at least the first 4 bases of the adapter are seen at the 3' end of the read. -O 4 O
This prevents trimming short 3' sequences that just happen by chance to match the first few adapter sequence bases.

Figuring out which adapter sequence to use when can be tricky. Your sequencing provider can tell you what adapters they used to prep your libraries. For
GSAF's adapter layout, please refer to Illumina - all flavors (USE with Caution, this is outdated but can be useful for a basic understanding of the adapters,

 (you may want to read all the "gory details" below later).the GSAF primarily only uses UDI's for all projects)

The top strand, 5' to 3', of a read sequence looks like this.

You must tell any adapter trimming program what your R1 and R2 adapters look like.

The GSAF website describes the flavors of Illumina adapter and barcode sequences in more detail: Illumina - all flavors (USE with Caution,
.this is outdated but can be useful for a basic understanding of the adapters, the GSAF primarily only uses UDI's for all projects)

https://wikis.utexas.edu/pages/viewpage.action?pageId=28165137
https://wikis.utexas.edu/pages/viewpage.action?pageId=28165137
https://wikis.utexas.edu/pages/viewpage.action?pageId=28165137
https://wikis.utexas.edu/pages/viewpage.action?pageId=28165137

Illumina library read layout

<P5 capture> <indexRead2> <Read 1 primer> [insert] <Read 2 primer> <indexRead1> <P7 capture>

The argument to is documented as the "sequence of adapter that was ligated to the 3' end". So we care about the <Read 2 primer> for R1 -a cutadapt
reads, and the <Read 1 primer> for R2 reads.

The "contaminent" for adapter trimming will be the <Read 2 primer> for R1 reads. There is only one Read 2 primer:

Read 2 primer, 5' to 3', used as R1 sequence adapter

AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC

The "contaminent" for adapter trimming will be the <Read 1 primer> for R2 reads. However, there are three different Read 1 primers, depending on library
construction:

Read 1 primer depends on library construction

TCTACACGTTCAGAGTTCTACAGTCCGACGATCA # small RNA sequencing primer site
CAGGTTCAGAGTTCTACAGTCCGACGATCA # "other"
TCTACACTCTTTCCCTACACGACGCTCTTCCGATCT # TruSeq Read 1 primer site. This is the RC of the R2 adapter

Since R2 reads are the reverse complement of R1 reads, the R2 adapter contaminent will be the RC of the Read 1 primer used.

For ChIP-seq libraries where reads come from both DNA strands, the TruSeq Read 1 primer is always used.
Since it is the RC of the Read 2 primer, its RC is just the Read 1 primer back.
Therefore, for ChIP-seq libraries the same adapter option can be used for both R1 and R2 reads:cutadapt

Cutadapt adapter sequence for ChIP-seq lib

cutadapt -a GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

For RNAseq libraries in this class, we use the small RNA sequencing primer as the Read 1 primer.
The contaminent is then the RC of this, minus the 1st and last bases:

Small RNA library Read 1 primer, 5' to 3', used as R2 sequence adapter

TCTACACGTTCAGAGTTCTACAGTCCGACGATCA # R1 primer - small RNA sequencing Read 1 primer site, 5' to 3'
TGATCGTCGGACTGTAGAACTCTGAACGTGTAGA # R2 adapter contaminent (RC of R1 small RNA sequencing Read 1 primer)

Exercise: other cutadapt options

The program has many options. Let's explore a few. cutadapt

How would you tell to trim trailing N's? cutadapt

cutadapt --help | less

Then, in the pager, type <enter> to look for the first occurrence of the string "trim", then to look for subsequent occurrences. less /trim n
The relevant option is --trim-n

How would you control the accuracy (error rate) of 's matching between the adapter sequences and the sequences?cutadapt FASTQ

Use the pager to search for terms like "error" or "accuracy". less

cutadapt --help | less

Then, in the pager, type <enter> to look for the first occurrence of the string "error", then to look for subsequent occurrences. less /error n
The relevant option is or :-e <floating point error rate> --error-rate=<floating point error rate>

-e ERROR_RATE, --error-rate=ERROR_RATE
 Maximum allowed error rate (no. of errors divided by
 the length of the matching region) (default: 0.1)

Suppose you are processing 100 bp reads with 30 bp adapters. By default, how many mismatches between the adapter and a sequence will be tolerated?

cutadapt's default error rate is 0.1 (10%)
Up to three mismatches will be tolerated when the whole 30 bp adapter is found (10% of 30).

If only 20 of the 30 adapter bases are found, up to two mismatches will be tolerated (10% of 20).

How would you require a more stringent matching (i.e., allowing fewer mismatches)?

Providing (or) as an option, for example, would specify a 5% error rate, or no more than 1 mismatching base in 20.--error-rate=0.05 -e 0.05

cutadapt example

Let's run on some real human miRNA (micro-RNA) data. cutadapt

First, stage the data we want to use. This data is from a small RNA library where the expected insert size is around 15-25 bp.

Setup for cutadapt on miRNA FASTQ

mkdir -p $SCRATCH/core_ngs/fastq_prep
cd $SCRATCH/core_ngs/fastq_prep
cp $CORENGS/human_stuff/Sample_H54_miRNA_L004_R1.cat.fastq.gz .
cp $CORENGS/human_stuff/Sample_H54_miRNA_L005_R1.cat.fastq.gz .

Exercise: How many reads are in these files? Is it single end or paired end data?

echo $((`zcat Sample_H54_miRNA_L004_R1.cat.fastq.gz | wc -l` / 4))
or
zcat Sample_H54_miRNA_L004_R1.cat.fastq.gz | wc -l | awk '{print $1 / 4}'

Looking at the file names, we see this is two lanes of single-end reads (and).FASTQ L004 L005

The data from lane 4 has 2,001,337 reads, the data from lane 5 has 2,022,237 reads.

Exercise: How long are the reads?

You could just Look at the size of the actual sequence on the 2nd line of any entry and count the characters....FASTQ

But you're experts now! So challenge yourself.

Use a combination of and to extract the 2nd line of the file. tail head .gz

Then use the program, but not with the option (check). wc -l wc --help

zcat Sample_H54_miRNA_L004_R1.cat.fastq.gz | head -2 | tail -1 | wc -c

These are 101-base reads. counts the "invisible" character, so subtract 1 from the character count it returns for a line.wc -c newline

Here's a way to strip the trailing characters from the quality scores string before calling to count the characters. We use the option newline wc -c echo -n
that tells not to include the trailing in its output. We gemerate that text using (an alternative to) of echo newline sub-shell evaluation backtick evaluation
that ... command:zcat

echo -n $(zcat Sample_H54_miRNA_L004_R1.cat.fastq.gz | head -2 | tail -1) | wc -c

Adapter trimming is a rather slow process, and these are large files. So to start with we're going to create a smaller file to work with.FASTQ

Remember, FASTQ files have 4 lines per read
zcat Sample_H54_miRNA_L004_R1.cat.fastq.gz | head -2000 > miRNA_test.fq

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-backtickquotingandsub-shellevaluation

Now execute like this: cutadapt

Setup for cutadapt on miRNA FASTQ

export CORENGS=/work/projects/BioITeam/projects/courses/Core_NGS_Tools
mkdir -p $SCRATCH/core_ngs/fastq_prep
cd $SCRATCH/core_ngs/fastq_prep
cp $CORENGS/human_stuff/miRNA_test.fq .

Cutadapt command for R1 FASTQ

cutadapt -m 20 -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC miRNA_test.fq \
 2> miRNA_test.cuta.log \
 | gzip > miRNA_test.cutadapt.fq.gz

Notes:

Here's one of those cases where you have to be careful about separating and . standard output standard error
 cutadapt writes its output to by default, and writes summary information to .FASTQ standard output standard error

In this command we redirect to a log file named using the syntax, in order to capture diag first standard error miRNA_test.cuta.log 2> cutadapt
nostics.

Then the remaining is piped to , whose output is the redirected to a new compressed file.standard output gzip FASTQ
(Read more about)Standard streams and redirection

You should see a log file when the command completes. How many lines does it have?miRNA_test.cuta.log

wc -l miRNA*log

Take a look at the first 15 lines.

head -15 miRNA_test.cuta.log

It will look something like this:

cutadapt log file

This is cutadapt 1.18 with Python 3.7.1
Command line parameters: -m 20 -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC miRNA_test.fq
Processing reads on 1 core in single-end mode ...
Finished in 0.06 s (113 us/read; 0.53 M reads/minute).

=== Summary ===

Total reads processed: 500
Reads with adapters: 492 (98.4%)
Reads that were too short: 64 (12.8%)
Reads written (passing filters): 436 (87.2%)

Total basepairs processed: 50,500 bp
Total written (filtered): 10,909 bp (21.6%)

Notes:

The line tells you how many sequences were in the original file.Total reads processed FASTQ
Reads with adapters tells you how many of the reads you gave it had at least part of an adapter sequence that was trimmed.

Here adapter was found in nearly all (98.4%) of the reads. This makes sense given this is a short (15-25 bp) RNA library.
The line tells you how may sequences were because they were shorter than our minimum length (20) Reads that were too short filtered out
after adapter removal (these may have ben primer dimers).

Here ~13% of the original sequences were removed, which is reasonable.
Reads written (passing filters) tells you the total number of reads that were written out by cutadapt

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Standardstreamsandredirection

These are reads that were at least 20 bases long after adapters were removed

The output describes its usage as follows:cutadapt --help

 cutadapt -a ADAPTER [options] [-o output.fastq] input.fastq

From this we see that the is a required argument. Clearly, it can be a FASTQ file, and it can be compressed based on this help:input.fastq

Compressed input and output is supported and
auto-detected from the file name (.gz, .xz, .bz2).
Use the file name '-' for standard input/output.

And this says that input reads can also be provided on , if that argument is a (). So input data can come:standard input hyphen -

from a named as an argument:file
 CGTAATTCGCG cutadapt -a -o small.trim.fq small.fq

and that file can be provided in one of three compression formatsinput.fastq
from if the argument is replaced with a ()standard input input.fastq dash -

 CGTAATTCGCG cat | cutadapt -asmall.fq -o small.trim.fq -

What about output (the trimmed reads)? The around the usage option indicate that the resulting trimmed can be written to a cutadapt brackets -o FASTQ
file, but is not by default. This implies that cutadapt by default writes its results to . So output can gostandard output

to a , using the optionfile -o
 CGTAATTCGCG cutadapt -a -o small.trim.fq small.fq

to without the optionstandard output -o
 CGTAATTCGCG cutadapt -a small.fq 1> small.trim.fq

Finally, as we've seen, also writes diagnostic output. Where does it go? The usage line doesn't say anything about diagnostics explicitly. But in cutadapt
the section of :Output cutadapt --help

 -o FILE, --output=FILE
 Write trimmed reads to FILE. FASTQ or FASTA format is
 chosen depending on input. The summary report is sent
 to standard output. Use '{name}' in FILE to
 demultiplex reads into multiple files. Default: write
 to standard output

Careful reading of this suggests that:

When the trimmed output is sent to a file with the option, output.fastq-o
diagnostics are written to standard output

so can be redirected to a log file with 1> small.trim.log
 CGTAATTCGCG cutadapt -a -o small.trim.fq small.fq 1> small.trim.log

But when the option is omitted, and output goes to ,-o standard output
diagnostics must be written to standard error

so can be redirected to a log file with trim.log2>
 CGTAATTCGCG cutadapt -a small.fq 1> small.trim.fq 2> small.trim.log

paired-end data considerations

Special care must be taken when removing adapters for paired-end files.FASTQ

For paired-end alignment, aligners want the R1 and R2 fastq files to be in the and be the .same name order same length
Adapter trimming can remove sequences if the trimmed sequence is too shortFASTQ

But different R1 and R2 reads may be discarded
This leads to mis-matched R1 and R2 files, which can cause problems with aligners like FASTQ bwa

 cutadapt has a protocol for re-syncing the R1 and R2 when the R2 is trimmed.
See the manual for more details (). cutadapt https://cutadapt.readthedocs.org/en/stable/

running cutadapt in a batch job

Now we're going to run on the larger files, and also perform paired-end adapter trimming on some yeast paired-end RNA-seq data. cutadapt FASTQ

First stage the 4 files we will work on:FASTQ

https://cutadapt.readthedocs.org/en/stable/

Setup for cutadapt

mkdir -p $SCRATCH/core_ngs/cutadapt
cd $SCRATCH/core_ngs/cutadapt
cp $CORENGS/human_stuff/Sample_H54_miRNA_L004_R1.cat.fastq.gz .
cp $CORENGS/human_stuff/Sample_H54_miRNA_L005_R1.cat.fastq.gz .
cp $CORENGS/custom_tracks/Yeast_RNAseq_L002_R1.fastq.gz .
cp $CORENGS/custom_tracks/Yeast_RNAseq_L002_R2.fastq.gz .

Instead of running on the command line, we're going to submit a job to the TACC batch system to perform on the cutadapt single-end adapter trimming
two lanes of miRNA data, and on the two yeast RNAseq files.paired-end adapter trimming FASTQ

Paired end adapter trimming is rather complicated, so instead of trying to do it all in one command line we will use one of the handy BioITeam scripts that
handles all the details of paired-end read trimming, including all the environment setup.

The name of the script we want is . Just type the full path of the script with no arguments to see its help information:trim_adapters.sh

trim_adapters.sh

/work/projects/BioITeam/common/script/trim_adapters.sh

You should see something like this:

trim_adapters.sh 2020_04_20
Trim adapters from single- or paired-end sequences using cutadapt. Usage:

trim_adapters.sh <in_fq> <out_pfx> [paired min_len adapter1 adapter2]

Required arguments:
 in_fq For single-end alignments, path to input fastq file.
 For paired-end alignemtts, path to the the R1 fastq file
 which must contain the string 'R1' in its name. The
 corresponding 'R2' must have the same path except for 'R1'
 out_pfx Desired prefix of output files.
Optional arguments:
 paired 0 = single end alignment (default); 1 = paired end.
 min_len Minimum sequence length after adapter removal. Default 32.
 adapter1 3' adapter. Default GATCGGAAGAGCACACGTCTGAACTCCAGTCAC (NEB).
 Specifiy 'illumina' for AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC
 (standard Illumina TruSeq3 indexed adapter).
 adapter2 5' adapter. Default TGATCGTCGGACTGTAGAACTCTGAACGTGTAGA (NEB).
 Specifiy 'illumina' for AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTA
 (standard Illumina TruSeq universal adapter).
Environment variables:
 show_only 1 = only show what would be done (default not set)
 keep 1 = keep intermediate file(s) (default 0, don't keep)
 cuta_args other cutadapt options (e.g. '--trim-n --max-n=0.25')

Examples:
 export cuta_args='-O 5'; trim_adapters.sh my.fastq.gz h54_b1 1 40
 trim_adapters.sh my_fastq.gz yeast_b3 1 28 Illumina Illumina

Based on this information, here are the 3 commands we want to execute: cutadapt

Paired-end RNA fastq trimming script

The BioITeam has an a number of useful NGS scripts that can be executed by anyone on . or . They are located in the ls6 stampede2 /work
/projects/BioITeam/common/script/ directory.

For groups that participate in BRCF pods, the scripts are available in on any compute server./mnt/bioi/script

Adapter trimming commands file

/work/projects/BioITeam/common/script/trim_adapters.sh Sample_H54_miRNA_L004_R1.cat.fastq.gz H54_miRNA_L004 0 20
/work/projects/BioITeam/common/script/trim_adapters.sh Sample_H54_miRNA_L005_R1.cat.fastq.gz H54_miRNA_L005 0 20
/work/projects/BioITeam/common/script/trim_adapters.sh Yeast_RNAseq_L002_R1.fastq.gz yeast_rnaseq 1

Let's put these command into a commands file. But first we need to learn a bit about in Linux.cuta.cmds Editing files

Exercise: Create cuta.cmds file

Use or to create a file with the 3 processing commands above. If you have trouble with this, you can copy a pre-made nano emacs cuta.cmds cutadapt
commands file:

cd $SCRATCH/core_ngs/cutadapt
cp $CORENGS/tacc/cuta.cmds .

Or use this " to " trick, also known as an . The tag can be anything; below it is . cat MARKER heredoc MARKER EOL

cd $SCRATCH/core_ngs/cutadapt
cat > cuta.cmds << EOL
/work/projects/BioITeam/common/script/trim_adapters.sh Sample_H54_miRNA_L004_R1.cat.fastq.gz H54_miRNA_L004 0 20
/work/projects/BioITeam/common/script/trim_adapters.sh Sample_H54_miRNA_L005_R1.cat.fastq.gz H54_miRNA_L005 0 20
/work/projects/BioITeam/common/script/trim_adapters.sh Yeast_RNAseq_L002_R1.fastq.gz yeast_rnaseq 1
EOL

When you're finished you should have a file that is (check this with).cuta.cmds 3 lines long wc -l

Next create a batch submission script for your job and submit it to the queue with a maximum run time of 2 hours.normal

Since batch jobs can't be submitted from an session, (just the session). idev make sure you are back on a login node exit idev

Create and submit cutadapt batch script

cd $SCRATCH/core_ngs/cutadapt
launcher_creator.py -j cuta.cmds -n cuta -t 01:00:00 -a OTH21164 -q normal
sbatch --reservation=CoreNGS-Wed cuta.slurm
showq -u

or, if you're not on the reservation:
launcher_creator.py -j cuta.cmds -n cuta -t 01:00:00 -a OTH21164 -q development
sbatch cuta.slurm
showq -u

How will you know your job is done?

Your job will no longer be displayed in the output.cuta showq -u

All our BioITeam scripts, if they complete without errors, will write a line to their logfile that includes the words "completed successfully!". So another way of
checking that each command completed is to search for that text in the logfiles.

Here we use the powerful (eneral egular xpression rocessor) tool: grep g r e p

You can also ask the batch system to send you email when the job starts to run and completes. The has a option that launcher_creator.py -e
lets you provide an email on the command line. Or you can set the environment variable if you want EMAIL_ADDRESS launcher_creator.py
to always fill in this field:

export EMAIL_ADDRESS="abattenhouse@utexas.edu"

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Editingfiles
https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-heredoc

to see all lines in any log file with the words 'completed successfully':
grep 'completed successfully!' *.log

or, to simply count how many lines have the the words 'completed successfully':
grep 'completed successfully!' *.log | wc -l

or to see only the names of files that have the words 'completed successfully'
grep -l 'completed successfully!' *.log

to see the names of the files that do NOT have the words 'completed successfully'
note we only look in *.cuta.log files since the pass0, pass1, pass2 log files will
never contain those words.
grep -L 'completed successfully!' *.cuta.log

You should see several log files when the job is finished:

H54_miRNA_L004.cuta.log, H54_miRNA_L005.cuta.log, yeast_rnaseq.cuta.log
these are the main execution log files, one for each commandtrim_adapters.sh

H54_miRNA_L004.acut.pass0.log, H54_miRNA_L005.acut.pass0.log
these are statistics files for the single-end adapter trimming cutadapt
their contents will look like our small example above

yeast_rnaseq.acut.pass1.log, yeast_rnaseq.acut.pass2.log
these are statistics files from trimming the R1 and R2 adapters, respectively. cutadapt

Take a look at the first part of the log file:yeast_rnaseq.acut.pass1.log

more yeast_rnaseq.acut.pass1.log

It will look something like this:

cutadapt pass1 log file

This is cutadapt 1.18 with Python 3.7.1
Command line parameters: -m 32 -a GATCGGAAGAGCACACGTCTGAACTCCAGTCAC --trim-n --paired-output yeast_rnaseq_R2.
tmp.cuta.fastq -o yeast_rnaseq_R1.tmp.cuta.fastq Yeast_RNAseq_L002_R1.fastq.gz Yeast_RNAseq_L002_R2.fastq.gz
Processing reads on 1 core in paired-end legacy mode ...
WARNING: Legacy mode is enabled. Read modification and filtering options
ignore the second read. To switch to regular paired-end mode,
provide the --pair-filter=any option or use any of the
-A/-B/-G/-U/--interleaved options.
Finished in 151.54 s (24 us/read; 2.55 M reads/minute).

=== Summary ===

Total read pairs processed: 6,440,847
 Read 1 with adapter: 3,875,741 (60.2%)
 Read 2 with adapter: 0 (0.0%)
Pairs that were too short: 112,847 (1.8%)
Pairs written (passing filters): 6,328,000 (98.2%)

 cutadapt started with 6,440,847 read pairs
112,847 reads were discarded as too short after the R1 adapter was removed

the same 112,847 reads were discarded from both the R1 and R2 files
the remaining 6,328,000 were then subjected to pass2 processing.

The corresponding file looks like this:yeast_rnaseq.acut.pass2.log

cutadapt pass2 log file

This is cutadapt 1.18 with Python 3.7.1
Command line parameters: -m 32 -a TGATCGTCGGACTGTAGAACTCTGAACGTGTAGA --paired-output yeast_rnaseq_R1.cuta.fastq
-o yeast_rnaseq_R2.cuta.fastq yeast_rnaseq_R2.tmp.cuta.fastq yeast_rnaseq_R1.tmp.cuta.fastq
Processing reads on 1 core in paired-end legacy mode ...
Finished in 83.64 s (13 us/read; 4.54 M reads/minute).

=== Summary ===

Total read pairs processed: 6,328,000
 Read 1 with adapter: 90,848 (1.4%)
 Read 2 with adapter: 0 (0.0%)
Pairs that were too short: 0 (0.0%)
Pairs written (passing filters): 6,328,000 (100.0%)

Total basepairs processed: 1,198,172,994 bp
 Read 1: 639,128,000 bp
 Read 2: 559,044,994 bp
Total written (filtered): 1,197,894,462 bp (100.0%)

 cutadapt started with 6,328,000 pass1 reads
no additional reads were discarded as too short after the R2 adapter was removed
so new R1 and R2 files, both with 6,328,000 reads, were produced

yeast_rnaseq_R1.cuta.fastq.gz and yeast_rnaseq_R2.cuta.fastq.gz

Exercise: Verify that both adapter-trimmed yeast_rnaseq fastq files have 6,328,000 reads

echo "$((`zcat yeast_rnaseq_R1.cuta.fastq.gz | wc -l` / 4))"
zcat yeast_rnaseq_R2.cuta.fastq.gz | wc -l | awk '{printf("%d\n", $1/4)}'

For more on , which is available in most programming languages, see printf https://alvinalexander.com/programming/printf-format-cheat-sheet/

https://alvinalexander.com/programming/printf-format-cheat-sheet/

	Pre-processing raw sequences

