
1.  
2.  
3.  
4.  

5.  

6.  

Analysis using BEDTools

The BED format
BEDTools overview

BEDTools versions
Input format considerations
About strandedness

About GFF/GTF annotation files
Filter annotations based on desired feature type
Convert GFF/GTF format to BED with ID in the name field

Exercises
Use bedtools merge to collapse overlapping annotations
Use bedtools multicov to count feature overlaps
Use bedtools genomecov to create a signal track

The BED format

BED ( rowser xtensible ata) format is a simple  (genomic regions) developed to support UCSC Genome B E D text format for location-oriented data
Browser tracks. Standard  files have 3 to 6 -separated columns, although up to 12 columns are defined. (Read more about BED Tab the UCSC Genome 

.)Browser's official BED format

 chrom (required) – string naming the  chromosome or other contig
 start (required) – the  start position of the region0-based

 end (required) – the  end position of the region1-based
 name (optional) – an  describing the regionarbitrary string

for  files loaded as UCSC Genome Browser tracks, this text is displayed above the regionBED
 score (optional) – an  for the regioninteger score

for  files to be loaded as UCSC Genome Browser tracks, this should be a number between 0 and 1000, higher = "better"BED
for non-GenBrowse  files, this can be any integer value (e.g. the length of the region)BED

 strand (optional) - a single character describing the region's strand
+ – (Watson strand) region plus strand
- – (Crick strand) region minus strand
. –  – the region is not associated with a strand (e.g. a transcription factor binding region)no strand

Important rules for BED format:

The number of fields per line must be consistent throughout any single  fileBED
e.g. they must all have 3 fields or all have 6 fields

The first base on a contig is numbered 0
versus  for  file positions1 BAM
so the a  of 99 is actually the 100th base on the contigBED  start
but positions are 1-based end

so a  of 200 is the 200th base on the contigBED  end
the length of a  region is  BED  - end start

not   , as it would be if both coordinates with 0-based or both 1-based - end start + 1
this difference is the single greatest source of errors dealing with  files!BED

Note that the UCSC Genome Browser also defines many BED-like data formats (e.g. , ,  and various RNA element bedGraph narrowPeak tagAlign
formats). See supported  for more information and examples.UCSC Genome Browser data formats

In addition to standard-format  files, one can create   files that have at least 3 of the standard fields ( , , ), followed by any BED custom BED chrom start end
number of custom fields. For example:

A  file contains the 3 required  fields, followed by some number of user-defined columns (all records with the same number)BED3+ BED
A  file contains the 3 required  fields, 3 additional standard BED fields ( , , ), followed by some number of user-BED6+ BED name score strand
defined columns

As we will see, functions require   input files, or  if  operations are requested. BEDTools BED3+ BED6+ strand-specific

Reservations

Use our summer school ( ) when submitting batch jobs to get higher priority on the normal queue :reservation CoreNGS-Fri  ls6 today

sbatch --reservation=  <batch_file>.slurmCoreNGS-Fri
idev -m 180 -N 1 -A OTH21164 -r CoreNGS-Fri

Memorize the 6 main BED fields

These 6 fields are that you should memorize them. Keep repeating " " until the BED  so important chrom, start, end, name, score, strand
words trip off your tongue 

https://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://genome.ucsc.edu/FAQ/FAQformat.html#format1
http://genome.ucsc.edu/FAQ/FAQformat.html


BEDTools overview

The  is a set of utilities for manipulating  and  files. We call it the "Swiss army knife" for genomic region analyses because its sub- suiteBEDTools BED BAM
commands are so numerous and versatile. Some of the most common operations perform set-theory functions on regions: intersection ( bedtools intersect
), union ( ), set difference ( ) – but there are many others. The table below lists some of the most useful sub-commands along with applicable merge subtract
use cases.

Sub-
command

Description Use case(s)

bamtobed Convert  files to  BAM BED
format.

You want to have the , , , and information for each mapped alignment record in contig start end  strand
separate fields. Recall that the strand is encoded in a  flag ( ) and the exact end coordinate BAM 0x10
requires parsing the CIGAR string.

bamtofastq Extract  sequences FASTQ
from  alignment BAM
records.

You have downloaded a  file from a public database, but it was not aligned against the reference BAM
version you want to use (e.g. it is  and you want an  alignment). To re-process, you need to hg19 hg38
start with the original  sequences.FASTQ

getfasta Get  entries FASTA
corresponding to regions.

You want to run , which requires the original  sequences, on a set of regions of motif analysis FASTA
interest.  In addition to the  file, you must provide  file(s) for the genome/reference used for BAM FASTA
alignment (e.g. the  file used to build the aligner index).FASTA

genomecov
Generate  per-base
genome-wide tr signal
ace

Produce a per-base genome-wide (in  format), for example for a ChIP-seq or  signal bedGraph
ATAC-seq experiment. After  format, such tracks can be visualized in conversion to binary bigWig
the Broad's ( ntegrative enome rowser) application, or configured in the UCSC Genome IGV I G B
Browser as custom tracks.

coverage
Compute of  coverage
your regions

You have performed a WGS (whole genome sequencing) experiment and want to know if has 
resulted in the desired coverage depth.
Calculate what proportion of the (known) transcriptome is covered by your RNA-seq alignments. 
Provide the transcript regions as a  or  file.BED GFF/GTF

multicov Count between  overlaps
one or more  files and BAM
a set of regions of interest.

Count RNA-seq alignments that overlap a set of genes of interest. While this task is usually done 
with a specialized RNA-seq quantification tool (e.g. or ),   featureCounts HTSeq bedtools multicov
can provide a quick estimate, e.g. for QC purposes.

merge Combine a set of possibly-
overlapping regions into a 
single set of non-
overlapping regions.

Collapse overlapping gene annotations into per-strand non-overlapping regions before counting (e.g with f
or ). If this is not done, the source regions will potentially be counted multiple times,  eatureCounts HTSeq

once for each (overlapping) target region it intersects.

subtract Remove unwanted regions. Remove rRNA gene regions from a merged gene annotations file before counting.

intersect Determine the betw overlap
een two sets of regions.

Similar to , but can also report the overlapping regions, not just count them.multicov

closest Find the genomic features 
nearest to a set of regions.

For a set of significant ChIP-seq transcription factor (TF) binding regions (" ") that have been peaks
identified, determine nearby genes that may be targets of TF regulation.

We will explore a few of these functions in our exercises.

BEDTools versions

 BEDTools is under active development and is always being refined and extended. Unfortunately, sometimes changes are made that are incompatible with 
previous  versions. For example, a major change to the way  functions was made after . BEDTools bedtool merge bedtools v2.17.0

So it is important to know which version of you are using, and read the documentation carefully to see if changes have been made since your  BEDTools
version.

Login to , start and session, then load the  module, and check its version.ls6  idev BioContainers  bedtools

http://bedtools.readthedocs.io/en/latest/content/bedtools-suite.html
http://bedtools.readthedocs.io/en/latest/content/tools/bamtobed.html
http://bedtools.readthedocs.io/en/latest/content/tools/bamtofastq.html
http://bedtools.readthedocs.io/en/latest/content/tools/getfasta.html
https://bedtools.readthedocs.io/en/latest/content/tools/genomecov.html
https://genome.ucsc.edu/FAQ/FAQformat.html#format6.1
http://bedtools.readthedocs.io/en/latest/content/tools/coverage.html
http://bedtools.readthedocs.io/en/latest/content/tools/multicov.html
http://bedtools.readthedocs.io/en/latest/content/tools/merge.html
http://bedtools.readthedocs.io/en/latest/content/tools/subtract.html
http://bedtools.readthedocs.io/en/latest/content/tools/intersect.html
http://bedtools.readthedocs.io/en/stable/content/tools/closest.html


1.  
2.  
3.  

1.  
2.  
3.  

4.  
5.  
6.  
7.  
8.  

Start an idev session

idev -m 120 -N 1 -A OTH21164 -r CoreNGS-Fri
# or
idev -m 90 -N 1 -A OTH21164 -p development

module load biocontainers
module load bedtools
bedtools --version   # should be bedtools v2.27.1

Input format considerations

Most functions now accept either  or  files as input.  BEDTools BAM BED
BED format files must be , or  if strand-specific operations are requested.BED3+ BED6+

When comparing against a set of regions, those regions are usually supplied in either  or .BED GTF/GFF
All text-format input files ( , , ) should use  ( only).BED GTF/GFF VCF Unix line endings linefeed 

The most important thing to remember about comparing regions using , is that  and BEDTools all input files must share the same set of contig names
be based on the same reference! For example, if an alignment was performed against a human  reference genome from , use GRCh38 Gencode
annotations from the corresponding  annotations.GFF/GTF

About strandedness

By default many utilities that perform overlapping, consider reads overlapping the feature on , but can be made  bedtools  either strand strand-specific
with the  or  option. This  options for utilities refers the orientation of the  read with respect to the feature's (gene's) strand.-s -S strandedness bedtools R1

-s says the  read is stranded (on the strand as the gene).R1  sense  same
-S says the  read is stranded (the strand as the gene).R1  antisense  opposite

RNA-seq libraries can be constructed with 3 types of :strandedness

sense stranded – the  read should be on the  as the gene.R1 same strand
antisense stranded – the  read should be on the  as the gene.R1 opposite strand

 unstranded – the could be on strandR1  either

Which type of RNA-seq library you have depends on the library preparation method – so ask your sequencing center! Our yeast RNA-seq library is sense 
 (note that most RNA-seq libraries prepared by GSAF are ).stranded antisense stranded

If you have a stranded RNA-seq library, you should use either   or   to avoid false counting against a gene on the wrong strand.-s -S

About GFF/GTF annotation files

Annotation files that you retrieve from public databases are often in  ( ene ransfer ormat) or one of the in  ( eneral eature ormat) formats GTF G T F GFF G F F
(usually  these days).GFF3

Unfortunately, both formats are obscure and hard to work with directly. While does accept annotation files in  format, you will not like  bedtools GFF/GTF
the results. This is because the most useful information in a  file is in a loosely-structured field.GFF/GTF  attributes

Also unfortunately, there are a number of variations of both annotation formats However both  and  share the first 8 -separated fields:GTF GFF Tab

seqname - The name of the chromosome or contig.
 source - Name of the program that generated this feature, or other data source (e.g. database)

 feature_type - Type of the feature, for example:
 CDS (coding sequence), exon

gene, transcript
start_codon, stop_codon

 start - Start position of the feature, with sequence numbering starting at 1.
 end - End position of the feature, with sequence numbering starting at 1.

 score - A numeric value. Often but not always an integer.
 strand - Defined as  (forward),  (reverse), or  (no relevant strand)+ - .

 frame - For a , one of 0, 1 or 2, specifying the reading frame of the first base; otherwise ' 'CDS .

The -separated columns will care about are (1) , (3)  and (4,5) . The reason we care is that when working with Tab seqname feature_type start, end
annotations, we usually only want to look at annotations of a particular type, most commonly , but also or .gene  transcript exon

So where is the real annotation information, such as the unique gene ID or gene name? Both formats also have a  field, which is usually populated by a 9th
set of  pair , and that's where the useful information is (e.g. the unique feature identifier, name, and so forth).name/value attributes

Take a quick look at a yeast annotation file,  using .sacCer_R64-1-1_20110208.gff less

https://www.gencodegenes.org/
https://genome.ucsc.edu/FAQ/FAQformat.html#format4
https://useast.ensembl.org/info/website/upload/gff3.html


1.  
2.  

Start an idev session

idev -m 120 -N 1 -A OTH21164 -r CoreNGS-Fri
# or
idev -m 90 -N 1 -A OTH21164 -p development

module load biocontainers
module load bedtools
bedtools --version   # should be bedtools v2.27.1

Look at GFF annotation entries with less

mkdir -p $SCRATCH/core_ngs/bedtools
cd $SCRATCH/core_ngs/bedtools 
cp $CORENGS/yeast_rnaseq/yeast_mrna.sort.filt.bam* .  
cp $CORENGS/catchup/references/gff/sacCer3.R64-1-1_20110208.gff . 

# Use the less pager to look at multiple lines
less sacCer3.R64-1-1_20110208.gff

# Look at just the most-important Tab-separated columns
cat sacCer3.R64-1-1_20110208.gff | grep -v '#' | cut -f 1,3-5 | head -20

# Include the ugly 9th column where attributes are stored
cat sacCer3.R64-1-1_20110208.gff | grep -v '#' | cut -f 1,3,9 | head

In addition to comment lines (starting with ), you can see the  contig names in column 1 and various feature types in column 3. You see also see tags # chrI
like  among the  on some records, but in general the  column information is .Name=YAL067C;gene=SEO1; attributes attributes really ugly

To summarize, we have two problems to solve:

We only care about a subset of feature types (here genes), and
We want the important annotation information – gene names and IDs – to appear as regular columns instead of weird name/value pairs.

Filter annotations based on desired feature type

One of the first things you want to know about your annotation file is what gene features it contains. Here's how to find that: (Read more about what's 
going on here at )piping a histogram

mkdir -p $SCRATCH/core_ngs/bedtools
cd $SCRATCH/core_ngs/bedtools
cp $CORENGS/catchup/references/gff/sacCer3.R64-1-1_20110208.gff . 

Create a histogram of all the feature types in a GFF

cd $SCRATCH/core_ngs/bedtools
cat sacCer3.R64-1-1_20110208.gff | grep -v '^#' | cut -f 3 | \
  sort | uniq -c | sort -k1,1nr | more

You should see something like this.

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-pipingahistogram


Histogram of yeast annotation features

  7077 CDS
  6607 gene
   480 noncoding_exon
   383 long_terminal_repeat
   376 intron
   337 ARS
   299 tRNA
   190 region
   129 repeat_region
   102 nucleotide_match
    89 transposable_element_gene
    77 snoRNA
    50 LTR_retrotransposon
    32 telomere
    31 binding_site
    27 rRNA
    24 five_prime_UTR_intron
    21 pseudogene
    17 chromosome
    16 centromere
    15 ncRNA
     8 external_transcribed_spacer_region
     8 internal_transcribed_spacer_region
     6 snRNA
     3 gene_cassette
     2 insertion

Let's create a file that contains only the 6607 entries: gene

Filter GFF gene feature with awk

cat sacCer3.R64-1-1_20110208.gff | grep -v '#' | \
  awk 'BEGIN{FS=OFS="\t"}{ if($3=="gene"){print} }' \
  > sc_genes.gff
wc -l sc_genes.gff

The line count of  should be 6607 – one for each gene entry.sc_genes.gff

Convert GFF/GTF format to BED with ID in the name field

Our  annotation subset now contains only the 6607 genes in the  genome. This addresses our first problem, but sc_genes.gff Saccharomyces cerevisiae
entries in this file still have the important information – the gene ID and name – in the loosely-structured 9th field.attributes 

If we want to associate reads with features, we need to have the feature names where they are easy to extract!

What most folks to is find some way to convert their  file to a  file, parsing out some (or all) of the name/value attribute pairs into  file GFF/GTF BED BED
columns after the standard 6. You can find such conversion programs on the web – or write one yourself. Or you could use the BioITeam conversion script, 

. While it will not work 100% of the time, it manages to do a decent job on most  files. /work/projects/BioITeam/common/script/gtf_to_bed.pl GFF/GTF
And it's pretty easy to run.

Here we just give the script the  file to convert, plus a  that tells it to   weird looking text (e.g. our attribute values).GFF 1 URL decode  Note

mkdir -p $SCRATCH/core_ngs/bedtools
cd $SCRATCH/core_ngs/bedtools
cp $CORENGS/catchup/references/gff/sacCer3.R64-1-1_20110208.gff .  

Let Anna know if you run into problems

If this script doesn't work on your annotation file, please let Anna know. She is always looking for cases where the conversion fails, and will try 
to fix it.



Convert GFF to BED with BioITeam script

/work/projects/BioITeam/common/script/gtf_to_bed.pl sc_genes.gff 1 \
  > sc_genes.converted.bed

The program reads the input file twice – once to gather all the attribute names, and then a second time to write the attribute values in well-defined 
columns. You'll see output like this:

----------------------------------------
Gathering all attribute names for GTF 'sc_genes.gff'...
  urlDecode = 1, tagAttr = tag
Done!
  6607 lines read
  6607 locus entries
  8 attributes found:
(Alias ID Name Note Ontology_term dbxref gene orf_classification)
----------------------------------------
Writing BED output for GTF 'sc_genes.gff'...
Done! Wrote 6607 locus entries from 6607 lines

To find out what the resulting columns are, look at the header line out the output  file:BED

head -1 sc_genes.converted.bed 

For me the resulting 16 attributes are as follows (they may have a different order for you). I've numbered them below for convenience.

Converted BED attributes

 1. chrom          2. start   3. end     4. featureType  5. length  6. strand
 7. source         8. frame   9. Alias  10. ID          11. Name   12. Note
13. Ontology_term 14. dbxref 15. gene   16. orf_classification

The final transformation is to do a bit of re-ordering, dropping some fields. We'll do this with , because can't re-order fields. While this is not strictly awk  cut
required, it can be helpful to have the critical fields (including the gene ID) in the 1st 6 columns. We do this separately for the header line and the rest of 
the file so that the BED file we give does not have a header (but we know what those fields are). We would normally preserve valuable  bedtools
annotation information such as , and , but drop them here for simplicity.Ontology_term  dbxref Note

mkdir -p $SCRATCH/core_ngs/bedtools
cd $SCRATCH/core_ngs/bedtools
cp $CORENGS/catchup/bedtools_merge/*.gff .  
cp $CORENGS/catchup/bedtools_merge/sc_genes.converted.bed

Re-order the final BED fields

head -1 sc_genes.converted.bed | sed 's/\r//' | awk '
 BEGIN{FS=OFS="\t"}{print $1,$2,$3,$10,$5,$6,$15,$16}
 ' > sc_genes.bed.hdr

tail -n +2 sc_genes.converted.bed | sed 's/\r//' | awk '
 BEGIN{FS=OFS="\t"}
 { if($15 == "") {$15 = $10} # make sure gene name is populated
   print $1,$2,$3,$10,$5,$6,$15,$16}
 ' > sc_genes.bed

One final detail. Annotation files you download may have non-Unix ( -only) line endings. Specifically, they may use Windows line endings (linefeed carriage 
 + ). (Read about .) The expression  uses the ( ubstitution itor) tool to replace   return linefeed Line ending nightmares sed 's/ //'\r  sed s ed carriage return

characters ( ) with nothing, removing them from the output.  \r

Finally, the 8 re-ordered attributes are:

https://wikis.utexas.edu/display/CoreNGSTools/Linux+fundamentals#Linuxfundamentals-Lineendingnightmares


Re-ordered BED attributes

 1. chrom  2. start  3. end  4. ID  5. length  6. strand
 7. gene   8. orf_classification

**Whew**! That was a lot of work. Welcome to the world of annotation wrangling – it's never pretty! But at least the result is much nicer looking. Examine 
the results using  or  or :more less head

Examine our BED-format annotations

cat sc_genes.bed | head -20

Doesn't this look better? (I've tidied up the output a bit below.)

chrI    334     649     YAL069W         315     +       YAL069W    Dubious
chrI    537     792     YAL068W-A       255     +       YAL068W-A  Dubious
chrI    1806    2169    YAL068C         363     -       PAU8       Verified
chrI    2479    2707    YAL067W-A       228     +       YAL067W-A  Uncharacterized
chrI    7234    9016    YAL067C         1782    -       SEO1       Verified
chrI    10090   10399   YAL066W         309     +       YAL066W    Dubious
chrI    11564   11951   YAL065C         387     -       YAL065C    Uncharacterized
chrI    12045   12426   YAL064W-B       381     +       YAL064W-B  Uncharacterized
chrI    13362   13743   YAL064C-A       381     -       YAL064C-A  Uncharacterized
chrI    21565   21850   YAL064W         285     +       YAL064W    Verified
chrI    22394   22685   YAL063C-A       291     -       YAL063C-A  Uncharacterized
chrI    23999   27968   YAL063C         3969    -       FLO9       Verified
chrI    31566   32940   YAL062W         1374    +       GDH3       Verified
chrI    33447   34701   YAL061W         1254    +       BDH2       Uncharacterized
chrI    35154   36303   YAL060W         1149    +       BDH1       Verified
chrI    36495   36918   YAL059C-A       423     -       YAL059C-A  Dubious
chrI    36508   37147   YAL059W         639     +       ECM1       Verified
chrI    37463   38972   YAL058W         1509    +       CNE1       Verified
chrI    38695   39046   YAL056C-A       351     -       YAL056C-A  Dubious
chrI    39258   41901   YAL056W         2643    +       GPB2       Verified

Note that value in the 8th column. In the yeast annotations from  there are 3 gene classifications: , and . The SGD Verified  Uncharacterized Dubious Dubio
 ones have no experimental evidence so are generally excluded.us

mkdir -p $SCRATCH/core_ngs/bedtools
cd $SCRATCH/core_ngs/bedtools
cp $CORENGS/catchup/bedtools_merge/*.gff .  
cp $CORENGS/catchup/bedtools_merge/sc_genes* .

Exercise: How many genes in our sc_genes.bed file are in each category?

Use to isolate that field, to sort the resulting values into blocks, then  to count the members of each block. cut  sort uniq -c

cut -f 8 sc_genes.bed | sort | uniq -c

You should see this:

    810 Dubious
    897 Uncharacterized
   4896 Verified
      4 Verified|silenced_gene

If you want to further order this output listing the most abundant category first, add another statement: sort

cut -f 8 sc_genes.bed | sort | uniq -c | sort -k1,1nr



The  options says to sort on the st field ( delimited) of input, using umeric sorting, in everse order (i.e., largest first). Which -k 1,1nr 1  whitespace n r
produces:

   4896 Verified
    897 Uncharacterized
    809 Dubious
      4 Verified|silenced_gene

Exercises

Use bedtools merge to collapse overlapping annotations

One issue that often arises when dealing with  regions is that they can overlap one another. For example, on the yeast genome, which has very few BED
non-coding areas, there are some overlapping s ( pen eading rames), especially ORFs that overlap or ones. ORF O R F  Dubious  Verified  Uncharacterized
When looks for overlaps, it will count a read that overlaps of those overlapping s – so some reads can be counted twice. bedtools  any ORF

One way to avoid this double-counting is to collapse the overlapping regions into a set of  – and that's what the  merged non-overlapping regions bedtool
 utility does ( ).s merge http://bedtools.readthedocs.io/en/latest/content/tools/merge.html

Here we're going to use  to collapse our gene annotations into a non-overlapping set, first for all genes, then for only non-  genes.bedtools merge Dubious

The output from   always starts with 3 columns: , and of the merged region only.bedtools merge chrom  start  end

Using the  ( olumn) and  ( peration) options, you can have information added in subsequent fields. Each comma-separated column number following -c c -o o -
 specifies a olumn to operate on, and the corresponding comma-separated function name following the  specifies the peration to perform on that c c -o o

column in order to produce an additional output field.

For example, our  file has a gene name in column 4, and for each (possibly merged) gene region, we want to know the of gene sc_genes.bed  number
regions that were collapsed into the region, and also gene names were collapsed. which

We can do this with , which says that three custom output columns should be added:-c  -o distinct,count,collapse6,4,4

the 1st custom column should result from collapsing distinct (unique) values of gene file column 6 (the strand,  or )+ -
since we will ask for stranded merging, the merged regions will always be on the same strand, so this value will always be  or + -

the 2nd custom output column should result from ing the gene names in column 4 for all genes that were merged, andcount
the 3rd custom output should be a comma-separated d list of those same column 4 gene namescollapse

bedtools merge also requires that the input  file be sorted by locus ( + ), so we do that first, then we request a strand-specific merge ( ):BED  chrom start -s

mkdir -p $SCRATCH/core_ngs/bedtools
cd $SCRATCH/core_ngs/bedtools
cp $CORENGS/yeast_rnaseq/*.gff .
cp $CORENGS/yeast_rnaseq/sc_genes.bed* .
cp $CORENGS/yeast_rnaseq/yeast_mrna.sort.filt.bam* .
module load biocontainers
module load bedtools

Use bedtools merge to collapse overlapping gene annotations

cd $SCRATCH/core_ngs/bedtools
sort -k1,1 -k2,2n sc_genes.bed > sc_genes.sorted.bed
bedtools merge -i sc_genes.sorted.bed -s -c 6,4,4 -o distinct,count,collapse > merged.sc_genes.txt

The first few lines of the  file look like this (I've tidied it up a bit):merged.sc_genes.txt

2-micron        251     1523    +       1       R0010W
2-micron        1886    3008    -       1       R0020C
2-micron        3270    3816    +       1       R0030W
2-micron        5307    6198    -       1       R0040C
chrI            334     792     +       2       YAL069W,YAL068W-A
chrI            1806    2169    -       1       YAL068C
chrI            2479    2707    +       1       YAL067W-A
chrI            7234    9016    -       1       YAL067C
chrI            10090   10399   +       1       YAL066W
chrI            11564   11951   -       1       YAL065C

http://bedtools.readthedocs.io/en/latest/content/tools/merge.html


Output column 4 has the region's . Column 5 is the count of merged regions, and column 6 is a comma-separated list of the merged gene names.strand

Exercise: Compare the number of regions in the merged and before-merge gene files.

wc -l sc_genes.bed merged.sc_genes.txt

There were 6607 genes before merging and 6485 after.

Exercise: How many regions represent only 1 gene, 2 genes, or more?

Output column 5 has the gene count.

cut -f 5 merged.sc_genes.txt | sort | uniq -c | sort -k2,2n

Produces this histogram:

   6374 1
    105 2
      4 3
      1 4
      1 7

There are 111 regions (105 + 4 + 1 + 1) where more than one gene contributed.

Exercise: Repeat the steps above, but first create a good.sc_genes.bed file that does not include Dubious ORFs.

cd $SCRATCH/core_ngs/bedtools
grep -v 'Dubious' sc_genes.bed > good.sc_genes.bed

sort -k1,1 -k2,2n good.sc_genes.bed > good.sc_genes.sorted.bed
bedtools merge -i good.sc_genes.sorted.bed -s \
  -c 6,4,4 -o distinct,count,collapse > merged.good.sc_genes.txt

wc -l good.sc_genes.bed merged.good.sc_genes.txt

There were 5797 "good" (non- ) genes before merging and 5770 after.Dubious

cut -f 5 merged.good.sc_genes.txt | sort | uniq -c | sort -k2,2n

Produces this histogram:

   5750 1
     18 2
      1 4
      1 7

Now there are only 20 regions where more than one gene was collapsed. Clearly eliminating the ORFs helped. Dubious

So there's one more thing we need to do to create a valid format file. Our  columns are BED merged.good.sc_genes.txt chrom, start, end, strand, 
, but the  specification is: .merged_region_count, merged_region(s) BED6 chrom, start, end, name, score, strand

To make a valid file, we'll include the first 3 output columns of  ( ), but if  is to be included, it BED6 merged.good.sc_genes.txt chrom, start, end strand
should be in column 6. Column 4 should be  (we'll put the collapsed gene name list there), and column 5 a  (we'll put the region count there).name score

We can use to re-order the fields: awk

cat merged.good.sc_genes.txt | awk '
  BEGIN{FS=OFS="\t"}
  {print $1,$2,$3,$6,$5,$4}' > merged.good.sc_genes.bed

Use bedtools multicov to count feature overlaps



We're now (finally!) actually going to do some gene-based analyses of a yeast RNA-seq dataset using and the -formatted, merged yeast  bedtools BED
gene annotation file we created above.

In this section we'll use  to count RNA-seq reads that overlap our gene features. The  command (bedtools multicov bedtools multicov http://bedtools.
) takes a feature file ( ) and counts how many reads from one or more input  files readthedocs.io/en/latest/content/tools/multicov.html GFF/BED/VCF BAM

overlap those feature. The input  file(s) must be position-sorted and indexed.BAM

Make sure you're in an session, since we will be doing some significant computation, and make and available. idev  bedtools  samtools

Start an idev session

idev -m 120 -N 1 -A OTH21164 -r CoreNGS-Fri
# or
idev -m 90 -N 1 -A OTH21164 -p development

Copy over the yeast RNA-seq files we'll need (also copy the  gene annotation file if you didn't make one).GFF

Setup for BEDTools multicov

# Get the merged yeast genes bed file if you didn't create one
mkdir -p $SCRATCH/core_ngs/bedtools_multicov
cd $SCRATCH/core_ngs/bedtools_multicov
cp $CORENGS/catchup/bedtools_merge/merged*bed .

# Copy the BAM file
cd $SCRATCH/core_ngs/bedtools_multicov
cp $CORENGS/yeast_rnaseq/yeast_mrna.sort.filt.bam* .

Exercises: How many reads are represented in the   file? How many mapped? How many proper pairs? How many yeast_mrna.sort.filt.bam
duplicates? What is the distribution of mapping qualities? What is the average mapping quality?

samtools flagstat for the different read counts.

samtools view + + +  for mapping quality distribution cut  sort uniq -c

samtools view +  for average mapping qualityawk

cd $SCRATCH/core_ngs/bedtools_multicov
samtools flagstat yeast_mrna.sort.filt.bam | tee yeast_mrna.flagstat.txt

samtools flagstat output

3347559 + 0 in total (QC-passed reads + QC-failed reads)
24317 + 0 secondary
0 + 0 supplementary
922114 + 0 duplicates
3347559 + 0 mapped (100.00% : N/A)
3323242 + 0 paired in sequencing
1661699 + 0 read1
1661543 + 0 read2
3323242 + 0 properly paired (100.00% : N/A)
3323242 + 0 with itself and mate mapped
0 + 0 singletons (0.00% : N/A)
0 + 0 with mate mapped to a different chr
0 + 0 with mate mapped to a different chr (mapQ>=5)

There are 3323242 total reads, all mapped and all properly paired. So this must be a quality-filtered . There are 922114 duplicates, or about 28%.BAM

To get the distribution of mapping qualities:

samtools view yeast_mrna.sort.filt.bam | cut -f 5 | sort | uniq -c 

http://bedtools.readthedocs.io/en/latest/content/tools/multicov.html
http://bedtools.readthedocs.io/en/latest/content/tools/multicov.html


distribution of mapping qualities

    498 20
   6504 21
   1012 22
    355 23
   1054 24
   2800 25
    495 26
  14133 27
    282 28
    358 29
    954 30
   1244 31
    358 32
   6143 33
    256 34
    265 35
   1112 36
    905 37
    309 38
   4845 39
   5706 40
    427 41
   1946 42
   1552 43
   1771 44
   6140 45
   1771 46
   3049 47
   3881 48
   3264 49
   4475 50
  15692 51
  25378 52
  16659 53
  18305 54
   7108 55
   2705 56
  59867 57
   2884 58
   2392 59
3118705 60

To compute average mapping quality:

samtools view yeast_mrna.sort.filt.bam | awk '
  BEGIN{FS="\t"; sum=0; tot=0}
  {sum = sum + $5; tot = tot + 1}
  END{printf("mapping quality average: %.1f for %d reads\n", sum/tot,tot) }'

Mapping qualities range from 20 to 60 – excellent quality! Because the majority reads have mapping quality 60, the average is 59. So again, there must 
have been quality filtering performed on upstream alignment records.

Here's how to run  in , directing the  to a file:bedtools multicov stranded mode standard output

idev -m 120 -N 1 -A OTH21164 -r CoreNGSday5
module load biocontainers
module load samtools
module load bedtools

mkdir -p $SCRATCH/core_ngs/bedtools_multicov
cd $SCRATCH/core_ngs/bedtools_multicov
cp $CORENGS/catchup/bedtools_merge/merged*bed .
cp $CORENGS/yeast_rnaseq/yeast_mrna.sort.filt.bam* .



Run bedtools multicov to count BAM alignments overlapping a set of genes

cd $SCRATCH/core_ngs/bedtools_multicov
bedtools multicov -s -bams yeast_mrna.sort.filt.bam \
  -bed merged.good.sc_genes.bed > yeast_mrna_gene_counts.bed

Exercise: How may records of output were written? Where is the count of overlaps per output record?

wc -l yeast_mrna_gene_counts.bed

6485 records were written, one for each feature in the  file.merged.sc_genes.bed

The overlap count was added as the last field in each output record (here field 7, since the input annotation file had 6 columns).

Exercise: How many features have non-zero overlap counts? 

cut -f 7 yeast_mrna_gene_counts.bed | grep -v '^0' | wc -l
# or
cat yeast_mrna_gene_counts.bed | \
  awk '{if ($7 > 0) print $7}' | wc -l

Most of the genes (6141/6485) have non-zero read overlap counts.

Exercise: What is the total count of reads mapping to gene features?

cat yeast_mrna_gene_counts.bed | awk '
 BEGIN{FS="\t";sum=0;tot=0}
 {if($7 > 0) { sum = sum + $7; tot = tot + 1 }}
 END{printf("%d overlapping reads in %d genes\n", sum, tot) }'

There are 1,152,831 overlapping reads in 6,141 non-0 gene annotations.

Use bedtools genomecov to create a signal track

A  is a  ( ) file with an  in a defined set of regions that shows the  for the signal track bedGraph BED3+ entry for every base count of overlapping bases
regions (see ). files can be visualized in the Broad's ( ntegrative enomics iewer) https://genome.ucsc.edu/goldenpath/help/bedgraph.html bedGraph IGV I G V
application ( ) or in the  ( ).https://software.broadinstitute.org/software/igv/download UCSC Genome Browser https://genome.ucsc.edu/

Go to the : UCSC Genome Browser https://genome.ucsc.edu/
Select from the top menu barGenomes 
Select Human from POPULAR SPECIES

under  select Human Assembly Feb 2009 (GrCh37/hg19)
select GO

In the hg19 browser page, the  track is a Layered H3K27Ac signal track
the x-axis is the genome position
the y-axis represents the count of ChIP-seq reads that overlap each position

where the ChIP'd protein is (histone , acetylated on the Lysine at amino acid position 27)H3K27AC H3

The  function ( ), with the  ( ed raph) option produces output bedtools genomecov https://bedtools.readthedocs.io/en/latest/content/tools/coverage.html -bg b g
in format. Here we'll analyze the per-base coverage of yeast RNAseq reads in our merged yeast gene regions.bedGraph 

Make sure you're in an session, then prepare a directory for this exercise.idev 

https://genome.ucsc.edu/goldenpath/help/bedgraph.html
https://software.broadinstitute.org/software/igv/download
https://genome.ucsc.edu/
https://genome.ucsc.edu/
https://bedtools.readthedocs.io/en/latest/content/tools/coverage.html


Prepare for bedtools coverage

idev -m 120 -N 1 -A OTH21164 -r CoreNGS-day5
# or
idev -m 90 -N 1 -A OTH21164 -p development

module load biocontainers
module load bedtools

mkdir -p $SCRATCH/core_ngs/bedtools_genomecov
cd $SCRATCH/core_ngs/bedtools_genomecov 
cp $CORENGS/catchup/bedtools_merge/merged*bed .
cp $CORENGS/yeast_rnaseq/yeast_mrna.sort.filt.bam* .

Then calling  is easy. The  option says to report the depth in bedGraph format.bedtools genomecov -bg

cd $SCRATCH/core_ngs/bedtools_genomecov
bedtools genomecov -bg -ibam yeast_mrna.sort.filt.bam > yeast_mrna.genomecov.bedGraph

wc -l yeast_mrna.genomecov.bedGraph # 1519274 lines

The format has only 4 columns:  and does not need to include positions with 0 reads. Here the count is the bedGraph (BED3+) chrom start end value
number of reads covering each base in the region given by , as you can see looking at the first few lines with :chrom start end head

chrI    4348    4390    2
chrI    4390    4391    1
chrI    4745    4798    2
chrI    4798    4799    1
chrI    4949    4957    2
chrI    4957    4984    4
chrI    4984    4997    6
chrI    4997    4998    5
chrI    4998    5005    4
chrI    5005    5044    2
chrI    5044    5045    1
chrI    6211    6268    2
chrI    6268    6269    1
chrI    7250    7257    3
chrI    7257    7271    4
chrI    7271    7274    6
chrI    7274    7278    7
chrI    7278    7310    8
chrI    7310    7315    6
chrI    7315    7317    5 

Because this file is for the small-ish (12Mb) yeast genome, and for reads that cover only part of that genome, it is not too big – only ~34M. But bedGraph 
depending on the species and read depth, files can get very large, so there is a coresponding binary format called  (see bedGraph bigWig https://genome.

). The program to covert a file to format is part of the  suite of programs. Look for it ucsc.edu/goldenpath/help/bigWig.html bedGraph bigWig UCSC Tools
with , and note that you can get information about all the tools in it using module spider with a specific container version:module spider

https://genome.ucsc.edu/goldenpath/help/bigWig.html
https://genome.ucsc.edu/goldenpath/help/bigWig.html


# look for the ucsc tools package
module spider ucsc

# specifying a specific container version will show more information about the package
module spider ucsc_tools/ctr-357--0

# displays information including the programs in the package:
  - bedGraphToBigWig
  - bedToBigBed
  - faToTwoBit
  - liftOver
  - my_print_defaults
  - mysql_config
  - nibFrag
  - perror
  - twoBitToFa
  - wigToBigWig

Looking at the help for , we'll need a file of chromosome sizes. We can create one from our header, using a substitution bedGraphToBigWig BAM Perl 
script, which I prefer to (see ):sed Tips and tricks#perlpatternsubstitution

module load ucsc_tools

cd $SCRATCH/core_ngs/bedtools_genomecov
bedGraphToBigWig  # look at its usage

# create the needed chromosome sizes file from our BAM header
module load samtools
samtools view -H yeast_mrna.sort.filt.bam | grep -P 'SN[:]' | \
  perl -pe 's/.*SN[:]//' | perl -pe 's/LN[:]//' > sc_chrom_sizes.txt

cat sc_chrom_sizes.txt

# displays:
chrI    230218
chrII   813184
chrIII  316620
chrIV   1531933
chrV    576874
chrVI   270161
chrVII  1090940
chrVIII 562643
chrIX   439888
chrX    745751
chrXI   666816
chrXII  1078177
chrXIII 924431
chrXIV  784333
chrXV   1091291
chrXVI  948066
chrM    85779

Finally, call  after sorting the file again using the format likes. (You can try calling bedGraphToBigWig bedGraph sort bedGraphToBigWig bedGraphToB
without sorting to see the error).igWig 

cd $SCRATCH/core_ngs/bedtools_genomecov
export LC_COLLATE=C
sort -k1,1 -k2,2n yeast_mrna.genomecov.bedGraph > yeast_mrna.genomecov.sorted.bedGraph
bedGraphToBigWig yeast_mrna.genomecov.sorted.bedGraph sc_chrom_sizes.txt yeast_mrna.genomecov.bw

See the size difference between the and the files. The (9.7M) is less that 1/3 the size of the (34M).bedGraph bigWig bigWig bedGraph 

cd $SCRATCH/core_ngs/bedtools_genomecov
ls -lh yeast_mrna.genome*

https://wikis.utexas.edu/display/CbbShortBashScript/Tips+and+tricks#Tipsandtricks-perlpatternsubstitution


Since the file is binary, not text, you can't use commands like , , on them directly and get meaningful output. Instead, just as convbigWig cat head tail zcat 
erts 'd files to text, and  convets binary files to text, the program can convert binary  format to text. gzip samtools view BAM bigWigToBedGraph bigWig
That's a different module ( ) and the default container version doesn't work, so we'll specifically load one that does:BioContainers ucsc-bigwigtobedgraph

# The default version of is broken, so load this specific biocontainers version
module load ucsc-bigwigtobedgraph/ctr-357--1

# see usage for bigWigToBedGraph:
bigWigToBedGraph

cd $SCRATCH/core_ngs/bedtools_genomecov
# use the program to view a few lines of the binary bigWig file
bigWigToBedGraph yeast_mrna.genomecov.bw stdout | head


	Analysis using BEDTools

